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ABSTRACT

Network formation models are a class of models for which the structure of the network is

endogenously determined. Strategic network formation treats each node as a player that has

preferences over network structures. The solution concept of pairwise stability is widely

used in the strategic network formation literature.Intutively a network is pairwise stable if

no two players have an incentive to add a link between them and no player has an incentive

to sever an existing link that connects him to another player. Despite intuitevily appealing

and widely used in application pairwise stable networks may fail to exist. In this thesis,

we address this problem using three different methodologies. First, we introduce two as-

sumptions on preferences that guarantee existence of pairwise stable networks. The single

crossing condition guarantees existence of pairwise stable networks by ruling out improv-

ing cycles of networks. Under the link monotonicity condition, existence can be shown

using a fixed point argument. Second,we estimate how likely it is for a randomly selected

network formation problem to have no pairwise stable networks. We use a probabilistic

method where each player independently draws a utility for each possible network from a

uniform(0,1) probability distribution. We ask, what is the probability that at least one pair-

wise stable network exists? We use Monte Carlo simulations to estimate this probability.

For n ≤ 10 the results show that this probability is very close to 1, i.e. the probability of

writing a model where no solution exists is very close to zero. This suggest that as long as

these results are valid for n > 10, the examples where pairwise stable networks fail to exist

should not be of practical concern in applications. We then consider network formation

problems (NFP) consisting of two elements: a neighborhood structure (or deviation struc-

ture) and a defeated relation. A neighborhood of a network is the set of all other networks

that differ from the initial network by a deviation rule. A neighborhood structure is the

collection of neighborhoods. A defeated relation is a binary relation over the set of all pairs
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of networks that are neighbors. A network is said to be stable if it defeats every network

in its neighborhood. Finally we ask, given a neighborhood structure, if we pick a defeated

relation at random, what is the probability that at least one stable network will exist? First,

we show that if a neighborhood is defined by differing in only one link, then the probability

that at least one stable network exists converges to 1− e−1 as the number of players in the

network grows. Next, we consider the class of regular neighborhood structures where all

networks have the same number of neighbors. We show that if the size of the neigborhood

doesn’t grow “too fast”, then the probability that there is at least one stable network ap-

proaches unity as the number of players grows. We show how apply this ideas for defeated

relations on finite sets with the same regularity property.
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CHAPTER 1

INTRODUCTION

Networks, i.e. collections of bilateral relationships between objects, permeate our eco-

nomic, biological and social life. Economically relevant examples include connections by

which job opportunities are shared [1], co authorship of scholarly papers [1], and infor-

mal insurance agreements [2]. Other examples outside of economics include the internet,

neural networks, electrical grids, and movie collaborations by actors(See [?,3,4]). Certain

common structures have been observed in available network data and to understand why

common properties emerge in different contexts we must understand how these networks

are formed.

Networks formation models consider a fundamental question of understanding net-

works. Namely, how are networks formed? Consider a group of economic agents making

decisions on how to form bilateral relationships. Suppose that we are given some com-

monly accepted rules describing how these relationships shall be made. The payoffs that

each agent receives depends not only on his set of relationships but potentially on the entire

network of bilateral relationships. Suppose also that agents are acting strategically in order

to maximize their own payoffs, then agents should weigh the cost and benefits of adding

and substracting links when called upon to form such a relationship.

As an example of the type of situations analyzed by strategic network formation, con-

sider a person Ann who receives a friend request from Bob on some social media like

facebook or twitter. To decide whether to accept or decline the friend request Ann must

weigh the benefits and costs of such decision given the entire structure of the network.

She might look at the friends that Bob has on facebook, maybe even look at Bob’s friends

friends and so on. Let’s suppose that Ann accepts Bob’s request. The payoffs for everyone
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can be changed by this decision. For example, Sue might not find it worthwhile to remain

a friend of Bob given his new friendhip with Ann.

As an example of the kind of question that motivates network formation theory, consider

the so-called “small-world networks.” These networks satisfy a set of properties.1Well-

documented examples include social networks, the internet and actor-movie collaborations.

What is the reason that two networks, generated in different complex environments, such

as the decision process for hiring actors for movies and the way in which web pages are

linked to one another on the internet both exhibit small-world properties? Why is it that,

even though the nodes are very different in each of these applications, the ways in which

they are related with each other have common properties. Why is the internet, as a network,

shaped the way it is? To attempt to answer these questions we must understand the process

by which these connections are made and severed.

These example suggest that, at least in some interesting situations the network structure

is not fixed and agents in the network make decisions about the network that links them.

As for example when two scholar decide to write a paper together or two people decide to

become facebook friends.This dynamic aspect of network formation makes it natural to ask

what kind of network structures will be stable and which are likely to change. Will there

be cycles of networks?

The first attempt to model network structure endogenously were random networks mod-

els(See Hofstad [6] and Bollobas [7]). These models assume some probability distribution

over the set of all possible networks. As a example consider the erdos-renyi random graph

model( See Erdos and Renyi [8,9]) where each link has independently of all other links

in the network the same given probability p of being formed. While these models pro-

1. This properties have to do mainly with short average shortest path and relatively high clustering coef-
ficient For further discussion and references on this topic see Watts [5], [4] and Buchanan [3] and references
there.
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vide useful insights into the way networks are created, they are not useful for economic

applications where agents form and sever links strategically.

In a seminal paper, Jackson and Wolinsky [1] introduced a strategic approach to model-

ing endogenous network formation. Now, links are not added at random but are the strategic

decision of the nodes. Typically, additional assumptions about the network formation pro-

cess are made. For example, we could assume a network formation process where each

node declares the set of nodes she wants to be connected with, and two nodes are con-

nected if they both name each other. However, the structure of the network that emerges is

sensitive to the details of this process.

To avoid making assumptions about the specific process, Jackson and Wolinsky [1] de-

fine a stability notion they call pairwise stability. Intuitively, a network is pairwise stable if

no two players have an incentive to add a link between them and no player has an incentive

to sever an existing link that connects him to another player. This notion of stability has the

advantage of not specifying the details of the network formation game and just focusing on

nodes not having an incentive to add or sever one link at a time.

Although widely used in applications„ it is well known that pairwise stable networks

may fail to exist (See Jackson and Watts [10]).To gain intuition on why pairwise stable

networks might fail to exist we consider the following example.

There are 3 players A, B and C who can form friendship relationships. Players have

preferences depend on the whole network structure of friendship. For example A may like

to be friends with B only if B is not friend of C and so on. Suppose that players preferences

on friendship relations are as follows.

A’s preferences are such that A hates C and likes B . Specifically, A prefers any network

where he is not a friend of C to a network where he is a friend with C. Moreover, assume

A likes B but not as much as he hates C. Thus, A only agrees to form a friendship with B if

B is not a friend of C. C likes A more than he dislikes B, so C only agrees to become B’s
3



friend if B is a friend of A. B likes both A and C so he is happy to form friendships with

both of them no matter what.

If preferences are as above, then no stable networks exist. To see this point, begin with

a situation where there are no friendship links. A and B will both agree to become friends.

Now suppose that after A and B have become friends, B (who likes both A and C) proposes

to form a friendship with C. C agrees since B is already a friend of A.

However, after the relationship between B and C is formed, A (who hates C) unilaterally

finishes his relationship with B. Then, since B is no longer a friend of A, C would sever his

relationship with B, bringing us back to the situation with no friendships. The existence of

this cycle is enough to conclude that there are no stable networks since all other possible

networks among A, B, and C contain a link between A and C and hence cannot be stable

because A hates C.

The example hence demontrates not only the lack of existence of pairwise stable net-

works but also the existence of cycles. The relationship between existence of stable net-

works and cycles has been studied in Jackson and Watts( [10]). They show that existence

of cycles is a necessary but not sufficient condition for pairwise stable networks to fail to

exist.
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CHAPTER 2

SUFFICIENT CONDITIONS FOR EXISTENCE OF PAIRWISE

STABLE NETWORKS

In this chapter, we introduce the general network formation model that we will consider

which is due to Jackson and Woilnsky. We define two conditions on preference profiles:

single crossing and link monotonicity. Single crossing is sufficient condition to rule out cy-

cles, which implies it is also a sufficient condition for existence of pairwise stable networks.

Link monotonicity is shown to be sufficient for existence using a fixed point argument.

2.1 Network Formation Model

To model network formation in a strategic way, we need to define the costs and benefits

that each player faces as a function of the network. There is a set of players N which will

be hold fixed throught the paper. The set of all networks with N as the vertex set is denoted

G. Given a network g ∈ G be denote by k (g) the number of links in g. If i and j are nodes

the link between i and j is denoted by i j. We denote by g+ i j the network that is created

by adding to g the link i j and by g−i the network obtained by deleting player i and all his

links from the network g.

Each player has preferences over networks represented by the utility function ui : G→R

. A utility profile is the collection of utility functions for each player u = (u1, · · · ,un).

Let us say that two networks are adjacent if they differ in only one link. That is, g and

g′ are adjacent if eitherg′ = g+ i j for some i j /∈ g or g′ = g− i j for some i j ∈ g.

A network gεG defeats an adjacent network g′ if either

• g′ = g+ i j, and ui (g+ i j) ≥ ui (g)and u j (g+ i j) ≥ u j (g)with at least one strict in-

equality, or
5



• g′ = g− i j, and ui
(
g′
)
> ui (g)

A network is pairwise stable if it is not defeated by an adjacent network.

2.1.1 Improving path and improving cycles of networks

An improving path is a sequence of distinct networks {g1,g2, . . . ,gK}such that each net-

work with k < K is adjacent to and defeated by the subsequent network gk+1. If we also

have that g1defeats gK then we have an improving cycle. It is well know that if no improv-

ing cylces exists then a pairwise stable network must exist, see [10].

2.2 Single Crossing property

We define a condition on the utility profile called monotonicity. We show that this condition

rules out improving cycles and hence is a sufficient condition for the existence of pairwise

stable networks. We also provide some economic examples where the condition is satisfied.

Definition 1. A profile of utility functions u = (u1, · · · ,un) satisfies (weak) single crossing

if for all g ∈ G, i j, pk /∈ g i j 6= pk we have

ut (g+ i j)= ut (g) =⇒ ut (g+ pk+ i j)= ut (g+ pk)

for t = i, j.

We also consider the following stronger version of single crossing which is useful in

proving the results below.

Definition 2. A profile of utility functions u = (u1, · · · ,un)is said to satisfy strong single

crossing if for all g ∈ G, i j /∈ g, for all g′such that g⊂ g′we have
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ut (g+ i j)= ut (g) =⇒ ut
(
g′+ i j

)
= ut

(
g′
)

for t = i, j.

The difference is that the weak version only requires that if, given a network g ,both i

and j would rather add the link between them, then adding a link between other two nodes

to g should not reverse i and j preferences.

On the other hand, the strong version requires that if, given a network g ,both i and j

would rather add the link between them, then adding any number of links between other

nodes to g should not reverse i and j willingness to add the link.

We begin by showing that the two assumptions are indeed equivalent.

Lemma 3. If a profile of utility function u = (u1, · · · ,un) satisfies weak single crossing then

it satisfies strong single crossing, hence both definitions are equivalent.

Proof. Let u be a utility profile satisfying weak single crossing and assume that ut (g+ i j)=

ut (g)for t = i, j then we must show that for all g′such that g⊂ g′,i.e. for all g′ = g+ pk+

rs+ ...+qt we have

ut
(
g′+ i j

)
= ut

(
g′
)

Let G1 (g) =
{

g′ ∈ G(N) : g′ = g+ e, for some link e /∈ g
}

By weak single crossing the

condition is true for all g1 ∈ G1 (g). Define

G2 (g) =
{

g′ ∈ G : g′ = g1 + e, for some link e /∈ g1and some g1 ∈ G1 (g)
}

, since the inequality is true for all g1 ∈ G1 (g)then by weak SC it is also true for all

g2 ∈ G2 (g) and so on for g3 etc...

Proposition 4. If a profile of utility functions u = (u1, · · · ,un) induces an improving cycle

of graphs thenu violates strong single-crossing.
7



Proof. Let C = g1, · · · ,gk be an improving cycle. Assume that u satisfies strong single

crossing and, without loss of generality, that g1is the network with the least number of

links in the cycle C. Notice that g1 must be unique. Then we can write g2 = g1 + i j for

some i j. Since C is a cycle there is at least one other place along the cycle where the link i j

is substracted. If u satisfies strong single crossing it must be that the network gt where i j is

severed has less than or equal number of links than g1which is a contradiction to g1having

the least number of links in C.

Proposition implies that a pairwise stable network will always exist under the single

crossing condition.

2.3 Examples

Next we consider some examples of utility profiles that satisfy the single crossing property

and discuss the condition. Within this framework, introduced by Goyal and Roshi [11] we

also discuss an economic application that satisfies this set of assumptions.

2.3.1 Playing the field

Consider network formation games in which the marginal returns from links for every

player can be expressed in terms of the number of links of the player and the aggregate

number of links of the rest of the players(Goyal and Roshi). Recall that g−i is the network

obtained by deleting player i and all his links from the network g and L(g−i) = ∑ j 6=i n j (g).

Thus the marginal gross returns of player i satisfy the playing the field property if for any

network g ∈ G(N) and any additional link i j /∈ g

ui (g+ i j)−ui (g) = Φ(ni (g) ,Li (g))− c

8



2.3.2 Local Spillovers

Consider a class of games in which the marginal gross returns of a player from a link

are a function only of the number of links of the player and that of the potential partner.

Formally, the payoffs of player i satisfy local spillovers if for any network g ∈ G(N) and

any additional link i j /∈ g we have

ui (g+ i j)−ui (g) = Ψ
(
ni (g) ,n j (g)

)
− c

Next we show that both playing the field and local spillover games satisfy single cross-

ing provided that marginal payoffs of adding a link funtions are increasing in both argu-

ments.

Lemma 5. local spillovers satisfies single crossing if and only if Ψ
(
ni (g) ,n j (g)

)
the

marginal payoff for i of adding a link with j is increasing in both ni (g)and n j (g)

Proof. Assume that ui (g+ i j)−ui (g)> 0. Which basically means that Ψ
(
ni (g) ,n j (g)

)
>

c. We must show that for all pk /∈ g it holds that

ui (g+ pk+ i j)−ui (g+ pk)> 0

Since obviously we have that ni (g+ pk) ≥ ni ((g)) and n j (g+ pk) ≥ n j ((g)) and Ψ is

increasing in both arguments we have

ui (g+ pk+ i j)−ui (g+ pk)≥ ui (g+ i j)−ui (g)> 0

Next we consider an economic application suggested by [11].
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2.3.3 Provision of a pure Public good(Goyal and Joshi).

There are n players, each of whom is deciding on a level of output, xi, to produce of a pure

public good. Given each player’s output, the utility of player i is: u(x) = xi +∑ j 6=i x j .

A collaboration link between two players is an agreement to share knowledge about the

production of the public good. Let c > 0 be the fixed investment required from each player

in such a link. In any network g the cost of producing output xi is given by, f (xi,g) =

1
2

(
xi

ni(g)

)
, where we set ni (g) = ηi (g)+1and ηi (g) denotes the number of links that i has

under network g. Given a network g, player i will choose output to maximize utility net of

production costs. This yields an optimal output of xi (g) = ni (g)
2. Therefore, the reduced

form gross payoff of player i is:

ui (g) =
1
2

ni (g)
2 + ∑

j 6=i
n j (g)

2− cni (g)

Hence it follows that the public goods example satisfies local spillovers, moreover both

own links and potential partner number of links increase the gross benefit of forming the

link.

2.4 Link Monotonicity condition

The condition can be expalined intuitevily as assuming that for each possible link e there is

one natural number ke such that to add e is profitable for both players involved in e if and

only if the network g has more than ke links. Hence we call the property link monotonicity

since it implies that once a pair of players finds it profitable to add a link when the network

has k links then they will continue to do so for all networks with more than k links.

Remember that k (g)denotes the number of links in g.

10



Definition 6. A profile of utilitiesu is said to be link monotonic if it satisfies that for each

possible link i j there exist an integer 0≤ ki j ≤M where M = N (N−1)/2 such that for all

g ∈ G we have:

1. for all i j ∈ g: k (g)> ki j⇐⇒ g− i j ≺ g

2. for all i j /∈ g: k (g)> ki j⇐⇒ g≺ g+ i j

We assume throughout this section that preferences satisfy link monotonicity. Under this

assumption we show that pairwise stable networks exist by using a fixed point theorem

argument.

We define the function for 0 ≤ k ≤ M given by f (k) =
∣∣{i j : ki j ≤ k

}∣∣, i.e. f (k) is

the number of links such that ki j ≤ k and hence for any network with k links would be

prefereed to be added by both players involved.

Next we show that under link monotonicity pairwise stable networks exist is anf only if

f has a fixed point.

Lemma 7. If a pairwise stable network exists then there exist a 0 ≤ k∗ ≤ M such that

f (k∗) = k∗.

Proof. Let g∗ be a pairwise stable network and suppose g∗has k∗ links 0 < k∗ < M2M−1.

Then, since g∗is pairwise stable we have for each i j ∈ g∗ g∗− i j ≺ g∗ . It follows by

link monotonicity that ki j ≤ k∗. Hence if a network g∗ is pws with k∗ links then the set{
i j : ki j ≤ k∗

}
has k∗ elements and so f (k∗) = k∗

Lemma 8. If there exist a 0 ≤ k∗ ≤ M such that f (k∗) = k∗then there is at least one

pairwise stable network

Proof. Let k∗be a fixed point of f and consider the the network g∗where the links active

in g∗ are those in the set
{

i j : ki j ≤ k∗
}

. By definition of k∗such a network would have
11



k∗links. Therefore we have that for all i j ∈ g∗ ki j ≤ k∗and by link monotonicity this implies

g∗− i j ≺ g∗ and for all i j /∈ g∗ we have ki j > k∗ which again by link monotonicity implies

g∗+ i j ≺ g∗. Therefore g∗ is pairwise stable.

The consequence of the two previous lemmas is that under link monotonicity proving

that at least one pairwise stable network exists is equivalent to proving that f (k) has a fixed

point.

We use the following fixed point theorem by Knaster-Tarski (See Knaster [12] and

Tarski [13]).

Theorem 9. Let L be a complete lattice and let g : L→ L be an order-preserving function.

Then the set of fixed points of g in L is also a complete lattice.

Using the Knaster-Tarski theorem we can show the the fixed point exist by showing the

following remark is true.

Remark 10. Let the function f : K→ K be defined as above, then f satisfies the hypothesis

of the theorem.

Proof. The domain K of f is given by the set of integers k such that 0 ≤ k ≤ M which

is a complete lattice. f is order preserving since by definition we have that for k1 < k2 it

must be that
{

i j : ki j ≤ k1
}
⊆
{

i j : ki j ≤ k2
}

and hence the second set has weakly more

elements.

The results are summarized in the following theorem.

Theorem 11. Let u be a profile of utility functions satisfing link-monotonicity, then a pair-

wise stable equilibrium exists.

12



2.5 Conclusion

This chapter is a contribution to the literature that looks at the problem of lack of existence

of pairwise stable networks. We define two sufficient conditions for existence of pairwise

stable networks. The weak (strong) single crossing condition requires that once a pair of

players i and j finds it profitable to add a link between each other given a network g, then

if we add one (many) link(s) to g between any two other players, this will not reverse the

fact that i and j would rather add the link between each other.

Link monotonicity states that preferences are such that for each possible pair of nodes

i, j there exist a natural number ki j such that given a network g with k>ki j then if i j ∈ g

both i and j prefer the network g to g− i j and if i j /∈ g then both i and j would rather add

the link between each other. Using the observation that any pairwise stable network whith

more than ki j links must contain a link between i and j, we construct a function such that

(under link monotonicity) a pairwise stable network exists if and only if the function has a

fixed point.

We also provide some economic applications discussed in the literature that satisfy the

single crossing condition.

One direction for future work includes finding more general conditions on preferences

that are sufficient for the existence of at least one pairwisse stable network.
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CHAPTER 3

MONTE CARLO ESTIMATION OF PROBABILITY OF

EXISTENCE OF PAIRWISE STABLE NETWORKS

In this chapter we define a simple model to generate random utilities and use montecarlo

simulations to measure the probability that at least one pairwise stable network exist. Our

results show that for 3 ≤ N ≤ 10 if we assign utilities to networks at random based on iid

draws of the same continuous distribution then the probability that for a given realization

stable networks fail to exist is statiscally non distinguishable from 0. This supports the use

of pairwise stability in applications.

3.1 Random Utilities Model

We are interested in providing a measure of how likely it is that we find a utility profile such

that no pairwise stable network exists. To do so we define a random utility model. Once

the different utilities that different players obtain from different networks become random

variables, we have a well-defined probability that at least one pairwise stable network ex-

ists.

The random utility model we consider is very simple and is the same as the one used

in the literature on finding the probability that a game with random payoffs contains a

pure strategy Nash equilibrium (See Dresher [14], Papavassilopoulos [15] and William and

Stanford [16]).

For each player i ∈ N and each network g ∈G(N) the utility ui (g) is a random variable

with probability distribution f . We assume that f is the same for all utilities in the model

and hence utilities are identically distributed. We also assume that the random variable

ui (g) is independent from all other random variables in the model. For the purpose of
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our simulations we will assume that f is the density function of a Uni f orm(0,1) random

variable.

For each pair of adjacent networks g and g′ = g+ i j , the probability that g′ defeats g is

given by

Pr
({

ui
(
g′
)
≥ ui (g)

}
∩
{

u j
(
g′
)
≥ u j (g)

})
Using the identically distributed assumption, we have that

Pr
({

ui
(
g′
)
≥ ui (g)

})
= Pr

{
u j
(
g′
)
≥ u j (g)

}
and since the distribution is continuous we have Pr

({
ui
(
g′
)
= ui (g)

})
= 0 which im-

plies

Pr
({

ui
(
g′
)
≥ ui (g)

})
=

1
2

and, using the independence assumption, we can write the probability that g′ defeats g as

Pr
({

u j
(
g′
)
≥ u j (g)

})2
=

1
4

From which it follows that the probability for any network with k links on n nodes to be

stable is given by (
3
4

)m−k(1
4

)k
=

(
3
4

)m(1
3

)k

where m = n(n−1)/2 is the number of possible links on n nodes.

Let us remark that the probability that a given network is stable under our model is a

decreasing function on the number of links on the network, the most likely network to be

stable is the empty network, and the least likely is the complete network. This asymmetry

follows from the requirement of pairwise stability that mutual consent to add a link is re-

quired but severing a link can be done unilaterally. This partially accounts for the difficulty
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in obtaining the exact probability that at least one stable network exist for arbitrary number

of nodes N.

To gain intuition on why this is the case let us define the random variable x defined as

the number of stable networks and consider its distribution. For the remainder of the paper,

all dependence of the random variables and sets on N the number of nodes on the networks

considered will not be explicitly noted.

Let Γk denote the set of all networks with k links and let xk denote the random vari-

able number of stable networks with k links. We can write x = ∑
m
k=0 xk and hence the

distribution of x is given by the convolution of the xk’s. Moreover, given our independence

assumption, we can easily establish that each of the xk has a binomial distribution with

Nk =
(m

2k
)

trials and probability of success given by pk =
(

1
4

)m
(3)k .

It follows that the distribution of x is the distribution of the sum of binomial distributions

with different number of trials and probabilities of success. The distribution of the sum of

binomial distributions with different parameters was studied in Butler(ref [17]). The author

gives algorithms for drawing from such a distribution and discusses different methods for

approximation. However, there is no well-known closed-form solution for such a random

variables distribution.

The difficulty of analytically solving the random utility model can be clarified by con-

sidering the event that a given network g is stable {g is stable}. Such an event is the

intersection, for all neighboring networks g′ of g, of the events {g dominates g′}. Consider

two of such events that have a player in common, i.e., consider events {g dominates g+ i j}

and {g dominates g+ ik}. Two such events will be correlated because if i likes g more than

g+ i j, then it is more likely that i likes g also more than g+ ik. Formally we have that

P
(

ug
i > ug+i j

i | ug
i > ug+ik

i

)
6= P

(
ug

i > ug+i j
i

)
and hence the events are correlated. The

fact that any of such two events are correlated makes closed-form solutions difficult.
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3.2 Simulations

To estimate the probability that at least one stable network exists, we use Monte Carlo

simulations. The reason for using simulations is, as sketched in the previous section, that

there are no well-known closed-form solutions for the distribution of the number of stable

networks. The results presented assume uniformU (0,1). The basic mechanics of the sim-

ulations involve two steps. In the first step, we generate a realization of utilities drawing

from the uniform iid model. In the second step, given the utilities for each player for each

network, we check whether a pairwise stable network exists or not.

We repeat this process many times and compute the frequency of realizations (or itera-

tions) in which we obtained at least one pairwise stable network and use that as an estimate

of the probability that at least one pairwise stable network exists. We also compute (when-

ever possible) the standard error of the estimates.

The simulations were implemented using Go, and the code is presented in the Ap-

pendix.

3.2.1 Results

The results are presented in the following table. The first column has the number of nodes

in the networks, the second has the number of iterations, and the third has how many of

those iterations were such that the code found a stable network. The estimated probability

that at least one stable network exists on the given number of nodes can be computed

by dividing the third by the second column.Standard errors are included in parenthesis

whenever possible.
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Number of Players/Nodes # of simulations # of simulations where stable found Standard Error

N=3 1Million 932507 0.00002

N=4 100000 94120 0.00007

N=5 100000 99804 0.00003

N=6 10000 10000 *

N=7 10000 10000 *

N=8 10000 10000 *

N=9 1000 1000 *

N=10 100 100 *

3.3 Conclusion

This paper contributes to the literature that looks at the problem of lack of existence of

pairwise stable networks. We consider a random utility model where the utility for each

player for each possible network is indepndently drawn from the Uniform(0,1) distribution.

In the context of this models we ask what is the probability that at least one pairwise stable

network exists. We use simulations to obtain estimates of this probability for networks with

3 throught 10 players.

The results of the simulations show that for the range of parameters considered finding

a utility profile such that no pairwise stable networks exist is hard . For networks with

more than 6 players the code could not find any utility profile such that no pairwise stable

network exists. For networks with 3, 4 and 5 players the estimates of the probability are

very close to one, although statistically significantly different from one.

These results provide support for the use of pairwise stability in strategic network for-

mation applications. Future work would try to generalize the results in this paper to net-

works of bigger size.
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CHAPTER 4

PROBABILITY OF EXISTENCE OF STABLE NETWORKS

As we have seen, examples where stable networks fail to exist are not hard to come by.

In this chapter, we consider more general stability solutions and leave pairwise stability

behind. Any definition of stability must include a notion of neighborhood among networks,

i.e., it has to specify a list other networks g′ a given network g shall be compared with, when

trying to determine if g is stable. In addition to the neighborhood any stability notion must

sepcify a criterion by which networks defeat each other. We call this criterion a defeated

relation defined for pairs of neighboring networks. A network is stable if it defeats all of

it’s neighboring networks.

Given a neighborhood structure, we consider a simple model to generate a defeated

relation at random. For each pair of neighboring networks, we toss a fair coin to determine

which network defeats the other. Moreover, we assume that the toin coss are independent

from each other.

We ask, given a neighborhood structure among networks, what is the probability that

if we select one defeated relation at random according to this process, then there exists at

least one network that defeats all of it’s neighbors? In other words, what is the probability

that at least one stable network exists? We also study how this probability depends on the

rule we select to determine which networks are comparable.

In this chapter, first we analyze the one link deviation structure and show that the prob-

lem of lack of existence doesn’t go away as the network size rows. Then we show that this

result is not robust if we allow for more general deviation structures. We consider regular

deviation structures where each network is compared with same number of neighboring

networks and show that if the number of networks doesn’t grow too fast, under our random
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model, the probability that at least one stable network exists converges to one as the size of

the network approaches infinity.

Then we consider applying the same tools developed to consider a situation where

the elements we consider as outcomes are not networks and characterize the probability

of existence of stable outcomes and show that this can be used as an alternative proof to

results in Papavassilopoulos [15] to find the probability of existence of pure strategy nash

equilibria in strategic form games where utilities are defined randomly.

4.1 Reduced Form Approach to Network Formation

We begin by introducing the model we will consider in this chapter. We call it reduced

form approach to network formation problems and define the notion of stability that we

will consider. This reduced form approach is defined by two basic ingredients:

First, a criterion of what networks are feasible deviations from each other, i.e. for

each given network g, what are the other networks that according to the criterion are to be

compared with g. We call this set of comparable networks the “neighborhood” of g and

write N (g). We assume that the neighborhood criterion is symmetric, i.e. if g’ is a neighbor

of g then g is a neighbor of g′.

Formally, we summarize all the neighborhoods into one “deviation graph” Q. The graph

Q is defined as a graph whose vertex set is the set of all networks on n nodes and there is

an edge between two networks g and g′ if g′is a neighbor of g.

For example, suppose that we consider a network formation problem where the devia-

tion rule only allows players to add or subtract one link at a time. Then the neighborhood

of any network g on n nodes is composed of m = n(n− 1)/2 other networks of the form

g± linki j for some nodesi, j ∈ N, and it can be shown that Q , the deviation graph, is iso-

morphic to the m-dimensional hypercube. On the other hand, if the deviation rule allows
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any number of links to be added or subtracted at the same time, then Q is the complete

graph on 2m nodes.

The second ingredient of the reduced form approach to network formation is a criterion

by which to compare a network g to its neighbors in N (g). We call this criterion a defeated

relation (see [18]) and assume that is satisfies that for all networks g′ in the neighborhood

of g either “g′ defeats g” or “g defeats g′”. Then we define a network to be stable if it

defeats all of its neighbors.

Formally, let Gn denote the set of all networks over n players. Define a network forma-

tion problem as a couple (Q,≺) where:

• Q is a “deviation graph” with vertex set Gn. Two networks g and g′ are linked or

neighbors in Q written as gQg’, if they are feasible deviations from one another. Let

N (g) =
{

g′ ∈ Gn : gQg′
}

denote the neighborhood of g.

• ≺ is a defeated relation over the set Gn such that for all g,g′ ∈ Gn such that gQg′

either g≺ g′ or g′ ≺ g.

A network is said to be stable with respect to problem (Q,≺) if it defeats all of its neighbors.

Formally, a network g is stable relative to NFP (Q,≺), if we have g′ ≺ g ,∀g′ ∈ N (g).

1

Next we consider some examples of how this defeated relation is derived. Many appli-

cations use a utility-based approach. This approach assumes each player has preferences

over networks represented by the utility function ui : Gn→R and derives the defeated rela-

tion using some form of preference aggregation function that maps the individual utilities

into a defeated relation among networks.

1. One can think of 1) and 2) together as an orientation Q≺ obtained by defining that the link between g
and g′ points from g into g′ if and only if g′ defeats g under ≺ . This interpretation leads to an alternative
definition of stability: we can say that a network is stable if it is a sink of Q≺.
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An example of a utility-based stability theory is the concept of pairwise stability (see

[1,18]). Let us say that two networks are neighbors if they differ by only one link. A

network g′ defeats a neighbor g if either

• g′ = g− i j and ui
(
g′
)
> ui (g) ,or

• g′ = g+ i j and ui
(
g′
)
≥ ui (g) and u j

(
g′
)
≥ u j (g), with at least one inequality hold-

ing strictly.

A network is pairwise stable if and only if it is not defeated by a neighboring network.

Another example of how one could aggregate preferences to define a defeated relation

is by using the same notion of neighborhood and saying a network g′ defeats a neighbor g

if

ui
(
g′
)
+u j

(
g′
)
= ui (g)+u j (g)

Another way to construct the defeated relation is to define g′ defeats a neighbor g if

∑
i∈N

ui
(
g′
)
= ∑

i∈N
ui (g)

this notion was defined in Jackson and Wollinsky [1] as ’strong efficiency’.

4.2 Random Defeated Relation over Networks

To provide a measure of how likely it is for stable networks to exist we follow the prob-

abilitic approach. We define some random model by which instances of the problem are

drawn and then compute the probability that at least one stable network will exist. Even if

preferences of economic application are not generated at random this probability can be in-

terpreted as the fraction of total instances such that stable networks exist and hence provide

some measure of how likely it is to run into this problem in practice.
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In this section we introduce the random model that we will use in the rest of the pa-

per. As we discussed in the previous section, network formation theories are sometimes

constructed by defining a utility function over the set of all networks for each agent in the

network and then defining some aggregation rule that maps utility profile to a defeated rela-

tion over the set of all networks.To generate random instances we could then use a random

model where the utility functions are chosen at random in a similar way as it is done in

other literatures [14–16,19,20]. This approach has the advantage of being used by other

literatures and of being intuitive.

Notice that in such a model, given a realtization of utilities we can construct through

the aggregation rule a defeated relation on the set of networks. Hence each random utility

model will induce a random defeated relation model where we draw at random from the set

of all defeated relations. Therefore, we could work directly with random models definned

at the level of the defeated relation.

In this case we don’t need to assume anything about the aggregation rule that maps

utility profiles into defeated relations. Also this model can be thought as including theories

that are not generated by utilities. Moreover, as shown in the following sections, under

some (mainly independence) assumptions.the defeated relation is tractable and assymptotic

results are possible.

. We define the uniform random being defeated relation as follows: hold the possible

deviations graph fixed and chose from all possible theories at random uniformly. Formally,

define the set of all possible defeated relations over Q and assign to each of the m2m−1

possible defeated relations a probability of being drawn given by 1
m2m−1 . This model is

equivalent to assuming that for each possible pair of neighboring networks g,g′ ∈ GN we

independently toss a fair coin and if the coin lands heads then g defeats g′ and if the coin

lands tails then g′ defeats g.
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Then, we have that independently of all other comparisons of networks

P
(
g≺ g′

)
= P

(
g′ ≺ g

)
= 1/2

This shows that probabilities to the events
{

g defeats g′
}

and hence the probability that

a stable network exists are well defined.

Formally, let Egdenote the event that g is stable, i.e. the event where g dominates all of

it’s neighbors .

Eg =
⋂

g′∈N(g)

{
g′ ≺ g

}
We are interested in finding the probability that there exists at least one stable graphs

which we denote Ps. Using our notation, we can write

Ps = Pr

 ⋃
gεGN

⋂
g′∈N(g)

{
g′ ≺ g

}
4.3 Probability of Existence of Stable Network

In this section we give some answers to the following question. Given a deviation structure

Q if we pick a being defeated relation at random according to the model introduced in the

previous section what is the probability that a stable network exists? As argued before, one

might think of this problem as the problem of counting the orientations of Q with no sink,

a problem studied in Bubley and Dyer [21].

First, we provide a general characterization of the probability of existence in terms of

a graph theoretic properties of the deviations graph Q . We show that the probability that

at least one stable network exists is completely determined by the independence sequence

of Q. Next, we provide asymptotic characterizations of the probability for two different

definitions of feasible deviations.
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4.3.1 Probability of Existence and Independent Sets of Q

This section follows closely the arguments presented in Bubley and Dyer [21]. Consider

the model of random defeated relations defined in the previous section. Let Eg denote the

event that g is stable, i.e. it dominates all of it’s neighbors. We are interested in finding the

probability that there exists at least one stable network which we denote Ps, i.e.

Ps = Pr
(
∪gεGN Eg

)
Similarly, for a set of networks G let EG denote the event that all networks in G are stable

simultaneously.

Using the principle of inclusion-exclusion (See Riordan [22] ) we can write the proba-

bility of the union as follows

Ps =
2m

∑
k=1

(−1)k−1
∑

{G⊂GN :|G|=k}
Pr(EG)

where m = n(n−1)/2 is the number of possible links on a network with n agents.

Let us say that a set of networks forms an independent set if all networks in the set are

not neighbors with each other. The next Lemma provides a characterization of the set of

networks that can be simultaneously stable.

Lemma 12. Given a deviation graph Q and set of networks G, there exist a being defeated

relation ≺ such that the set of stable networks for instance (Q,≺)is G if and only if G is an

independent set of Q.

Proof. This follows directly from the assumption that either g defeats g′ or g′ defeats g but

not both.
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Let Ik denote the cardinality of the set of all independent sets of networks with k mem-

bers in Q, the greatest integer α such that Iα > 0 is called the stability number of Q. The

sequence of integers (Ik)
α
k=1 is the independence sequence of Q.

The independence of the events g≺ g′ and g≺ g′′ and the observation that two neigh-

bors can’t be stable at the same time gives us that Pr (EG) = 0 if G is not an independent

set and Pr (EG) =
(

1
2

)mk
if G ∈ Ikso we can use Lemma 1 and write:

Ps =
2m

∑
k=1

(−1)k−1 Ik

(
1
2

)mk

This expression allows us to compute the probability of existence of a stable network given

that we know the independence sequence of the deviations graph Q.

To fix the ideas, we will show how to apply the formula to an example where n = 3

and only networks that differ by one link are neighbors. In that case m = 3 and there are

23 = 8 different networks with 3 nodes, so I1 = 8. It is not hard to see that I2 = 16, I3 =

8 and I4 = 2and Ik = 0 for k = 5,6,7,8. Therefore the probability that a stable networks

exists is given by

Ppws = 1−16
1
26 +8

1
29 −2

1
212

In general, it is a hard problem to find all the values of the Ikfor n > 3 so we will find upper

and lower bounds for Ik and then let the size of the network grow to give a asymptotic

results.

Another application of the formula is when we allow all networks to be neighbors with

each other in which case Q is the complete graph. In this case the only independent sets

are singletons and the probability Pswould be

Ps = 2m
(

1
2

)2m−1
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By taking logs we get that

log2 (Ps) = m+1−2m

from which it follows that as n goes to infinity Pswill converge to 0.

4.3.2 Probability of Existence for One Link Deviations

Consider a deviation structure where only one link at a time deviations are allowed, i.e.

define two networks g and g′ to be neighbors if there exists a pair i, j ∈ N such that g′ =

g+ i j. The deviations graph associated with this definition is denoted Qm. It is easy to see

that Qm is isomorphic to the m-hypercube (hence the notation) and hence the independence

sequence is not known for arbitrary n (See Galvin [23]).

Suppose we pick a defeated relation among neighboring networks at random using the

model described before, and let Pndenote the probability that at least one stable network

among n players exists . As argued in the previous section using an inclusion-exclusion

argument and letting mn =
n(n−1)

2 we can write

Pn =
2mn

∑
k=1

(−1)k−1 In
k

(
1
2

)mnk

We show that the probability converges converges to 1−e−1 as the number of players goes

to infinity.

Theorem 13. When only one link at a time deviations are allowed the probability that

there is at least one stable network Pn converges to 1− 1
e as the number of players n goes

to infinity.

The proof is contained in the appendix. Whether this is large or small is left to the

reader to decide but it shows that at least in the context of the random defeated relation

model the problem of existence does not go away as the size of the network grows.
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4.3.3 Probability of Existence for Regular Deviations

We have just showed that in the one link deviations model 0< lim
n→∞

Pn < 1 and in this section

we introduce a more general model to explore how robust this property is to changes in the

deviation structure. We find that this property is in some sense unique to the one link

deviation structure and that most other deviation structures the probability of at least one

stable networks converges either to 1 or to 0.

The model we consider allows for a more general type of deviations where we only im-

pose that every networks is comparable to the same number of networks En. The behavior

of the integer Enas n grows large will be the most important determinant of the asymptotic

properties of Pn.

Notice this assumption is indeed more general than the the one in the previous section

since the one link deviation satisfies the assumption with En = mn where(as before) mn =

n(n−1)/2 is the number of possible links among n players.

We get the following result

Theorem 14. Assume that limn→∞
En

2mn = 0 and that En is well behaved so that limn→∞mn−

En exists, then one of three cases hold:

1. There exist an N, such that n > N implies En = mn + a in which case limn→∞Pn =

1− e−2−a

2. limn→∞mn−En = ∞ in which case limn→∞Pn = 1.

3. limn→∞mn−En =−∞ in which case limn→∞Pn = 0.

For a proof see the appendix.

Intuitively, the theorem shows that there is a threshold function mn such that if the

number of comparable networks grows faster than this function then the probability of ex-

istence of a stable network will converge to zero. If the number of comparable networks
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grows slower than mn then the probability will converge to one and if it converges at as-

symptotically the same rate, then we will have the probability converging to a number

between zero and one.

The theorem can be interpreted as saying that as long as you don’t allow for “too many”

feasible deviations then the lack of existence of stable networks is a problem only for small

networks, i.e. for networks with a small number of nodes. As the number of nodes in the

network grows large, then the chance of ending up with a defeated relation with no stable

networks becomes negligible.

On the other hand, if your network formation theory allows for “too many” feasible

deviations then as the number of nodes in the network grows you will most certainly run

into situations where stable networks fail to exist.

4.4 Stability for finite sets

In this section we introduce a similar notion of stability for finite sets. The elements of this

set will be referred to as outcomes. Let Vn denote the set of all outcomes indexed by n.

Define a Outcome Choice Problem as a couple (Q,≺) where:

• Q is a “deviation graph”with vertex set Vn. Two outcomes a and a′ are linked or

neighbors in Q written as aQa’, if they are comparable in the theory and let N (a) ={
a′ ∈Vn : aQa′

}
denote the neighborhood of outcomea.

• ≺ is a defeated relation over the set Vn such that for all a,a′ ∈Vn such that aQa′ we

have either a≺ a′ or a′ ≺ a.

An outcome is said to be stable with respect to problem (Q,≺) if it defeats all of its

neighbors. Formally, an outcome a is stable relative to NFP (Q,≺), if we have a′ ≺ a

,∀a′ ∈ N (a). Consider as before a finite set Vn of possible outcomes and a adjacency rela-
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tion on Vn defining which pair of alternatives are comparable. Let Qndenote the “deviations

graph” indexed by n.

Assume that the size of the neighborhood of every outcome is En, i.e. En = |N (a)| =∣∣N (a′)∣∣ for all a,a′εVn. Under this assumption, all outcomes have the same number of

alternative outcomes to be compared with and there are no outcomes that are compared with

more alternatives than others. In the particular case where outcomes are networks studied

above, this symmetry assumption is satisfied by the one link deviation adjacency but it is

not satisfied if we allow a player to delete as many links as he wants unilaterally[explain

this better] as in Nash stability(for a definition see [18]).

Consider the random orientation model where every possible orientation of Qnis given

equal probability of being chosen. Denote by Pnthe probability that the chosen orienta-

tion has at least one sink. We have shown by inclusion exclusion argument that Pn =

∑
Vn
k=1 (−1)k−1 In

k
2kEn , where In

k is the number of independent sets of vertices of Qnwith k

elements. The main result of this section is the following theorem.

Theorem 15. Assumeme that limn→∞
Vn
2En = c and that limn→∞

En
Vn

= 0 then limn→∞Pn =

1− e−c

The proof of the theorem is included in the appendix.

4.4.1 Example: Prob of Existence of pure strategy Nash equilibria.

In this section we show how to apply the theorem to compute the probability that at random

game as defined in for example [15] contains at least one pure strategy Nash equilibrium.

As mentioned above this problem has already been analyzed elsewhere and we intend this

as an example and alternative proof of the existing literature on the topic.

Suppose we have a game with N agents and each agent has p actions available. Consider

the random utility model where each ui (a)is independent(from all other RV in the model)
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identically distributed random variable with a continuous probability distribution given by

f . We want to find the probability that randomly selected game has a pure strategy Nash

equilibrium.

We proceed by defining a graph GNwith vertex set given by the strategy profiles of the

game and say that two strategy profiles are adjacent if they differ in only one coordinate,

i.e. strategy profiles a and a′ are adjacent if there exists some player i such that we can write

a′ =
(
a′i,a−i

)
. Then we define an orientation by saying that for two adjacent strategy pro-

files a and a′, a dominates a′ if ui (ai,a−i)≥ ui
(
a′i,a−i

)
it follows from the definitions that

a strategy profile is a pure strategy Nash equilibrium if and only if it is a sink of this orien-

tation. Moreover, it follows from the independence assumption that for any pair of adjacent

strategy profiles a and a′ we have that Pr
(
a→ a′

)
= Pr

(
a′→ a

)
= 1/2 independently of

all other pair of adjacent strategies and hence the random orientation model induced by the

random utility model is equivalent to the random defeated relation considered above.

Therefore, since there are pNdifferent strategy profiles and each profile is adjacent to

N (p−1) other profiles we can apply the theorem with Vn = pN and EN = (p−1)Nand so

the probability that at least on pure strategy Nash equilibrium exists will be determined by

limn→∞
pN

2N(p−1) which equals 1 if p = 2 and equals zero for p ≥ 3. Hence we obtain the

following theorem:

Theorem 16. In the random game model with N players and each player has p actions let

PN denote the probability that at least one pure strategy Nash equilibrium exists. Then we

have that limn→∞Pn = 1− e−0 = 0 for p≥ 3 and limn→∞Pn = 1− e−1 for p = 2.

4.5 Conclusion

We define a broad class of Networks Formation Problems and consider the solution concept

of stability. In general stable networks could fail to exists and we provide a measure of
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how likely it is that there is at least one stable network. We consider the class of network

formation theories defined by two basic components: the notion of which networks are

feasible deviations from each other and a criterion by which to rank comparable networks.

We hold the definition of comparable networks fixed and consider a simple random

model to create a random defeated relation among networks. This allows us to compute

the probability that at least one stable network exists. We show that if we consider theories

were only adding or subtracting one link at a time is valid then if we pick a theory at random

that probability converges to 1− e−1as the number of players grows to infinity. Whether

this number is large or small is left up to the reader.

Next, we focus on how sensitive our result is to changes in the definition of comparable

networks. We assume that all networks have the same number of neighbors and show that

unless the number of comparable networks is asymptotically equal (plus a constant) to the

number of comparable networks in the one link deviation the probability will converge

either to zero or one. In this sense the result for one link deviations is rather sensitive to

changes in the definition of comparable networks.

Finally, we consider abstract finite sets were the elements are not necessarily networks

and derive asymptotic formulas for the probability that at least one element of the set de-

feats all of its neighbors. As an application we show that this result can be applied to the

problem of finding the probability that at least one pure strategy equilibrium exists consid-

ered in [15].

Further research would be to answer similar question for the notion of pairwise stability

defining the random process at the level of the utility functions and to apply the results in

the paper to matching problems.
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4.6 Appendix 1: Proof of results one link deviations

In this appendix we prove the following theorem.

Theorem 17. When only one link at a time deviations are allowed, the probability that

there is at least one stable network Pn ,converges to 1− 1
e as the number of players in the

network n goes to infinity.

We begin with a technical lemma about the independent sequence of the m-dimensional

hypercube.

Lemma 18. Let Im
k denote the number of independent sets of size k in a m-dimensional

hypercube then we get that:

0 5 1
k! −

Im
k

2km ≤ m+1
2m+1(k−2)! for 2≤ k ≤ 2m

m+1 +1

Proof. First, to construct a lower bound for Im
k we define a procedure to find an independent

set of size k. Pick any network g, this network will have m neighbors, so to find the second

network of the set we are free to chose from any of the 2m−m− 1 remaining networks.

Among this we will assume we pick one that has no neighbors in common with g. Since

the two networks have no neighbors in common the size of their neighborhoods must be 2m

which gives us 2m−2(m−1)available choices to pick the third network. Notice that if the

neighborhoods overlap we actually have more choices for the third network and hence the

estimate of Im
k we get out of this procedure is indeed a lower bound. Counting all possible

choices gives
k

∏
j=1

2m− j (m+1)

To obtain our lower bound we divide by the k! different ways in which we end up with

the same set, i.e. disregarding the order in which we construct the set and we get that for
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2≤ k ≤ 2m

m+1 +1

Im
k ≥

1
k!

k

∏
j=1

2m− j (m+1)

Note that if k becomes any larger, then we start multiplying negative numbers on the left

hand side, and our initial argument for this inequality breaks down. From the inequality,

we get:
Im
k

2km ≤
1
k!

k−1

∏
j=1

1− j
(m+1)

2m

Next we bound the right hand side

1
k!

k−1

∏
j=1

1− j
(m+1)

2m ≤ 1
k!

(
1−

k−1

∑
j=1

j
(m+1)

2m

)

The inequality above is proved using induction.

For example, (1− x)(1− y)> 1−x−y= 1−(x+ y) for x,y> 0 and so (1− x)(1− y)(1− z)>

(1− (x+ y))(1− z)> (1− (x+ y+ z)).

The right hand side above can be further simplified to

1
k!

(
1− k (k−1)

2
(m+1)

2m

)
=

1
k!
− m+1

2m+1
1

(k−2)!

which rearranged proves the right inequality in the Lemma. The left inequality is proved

similarly using as the upper bound on Im
k the number of all subsets of size k chosen from 2m

elements
(2m

k
)
.

To prove that lim
n→∞

Pn = 1− 1
e we must show that for every ε > 0 there exists a N

such that n > N implies that
∣∣∣(1− 1

e

)
−Pn

∣∣∣ < ε . Chose an arbitrary ε > 0 and let mn =

n(n−1)/2. Observe the following:

1. lim
n→∞

∑
n
k=1

(−1)k−1

k! = 1− 1
e
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2. The sequence ∑
n
k=1

1
k!converges (to e).

3. lim
n→∞

e n+1
2n+1 = 0

Thus we can choose N1where n > N1implies
∣∣∣∣(1− 1

e

)
−∑

2mn
k=1

(−1)k−1

k!

∣∣∣∣ < ε
3 . We can

choose N2 where n > N2 implies 1
M! +

1
(M+1)! + · · ·+

1
2mn ! <

ε
3 where Mn = 2mn

mn+1 + 2

(Cauchy Theorem). We can chose N3where n>N3implies e n+1
2n+1 <

ε
3 . Let N =max(N1,N2,N3)so

that n > N implies that:

∣∣∣∣(1− 1
e

)
−Pn

∣∣∣∣
≤

∣∣∣∣∣
(

1− 1
e

)
−

2mn

∑
k=1

(−1)k−1

k!

∣∣∣∣∣+
∣∣∣∣∣2

mn

∑
k=1

(−1)k−1

k!
−Pn

∣∣∣∣∣
<

ε

3
+

∣∣∣∣∣2
mn

∑
k=1

(−1)k−1

k!
−Pn

∣∣∣∣∣
By the triangle inequality and point 1 above.

Next, we focus on the second term, using the formula for Pn in terms of the indepen-

dence sequence we get:

∣∣∣∣∣2
mn

∑
k=1

(−1)k−1

k!
−Pn

∣∣∣∣∣<
∣∣∣∣∣2

mn

∑
k=1

(−1)k−1

(
1
k!
−

Imn
k

2kmn

)∣∣∣∣∣
≤

2mn

∑
k=1

∣∣∣∣∣ 1
k!
−

Imn
k

2kmn

∣∣∣∣∣
≤ mn +1

2mn

(
1
0!

+ · · ·+ 1
(M−1)!

)
+

(
1

M!
+ · · ·+ 1

2mn!

)
< e

mn +1
2mn

+
ε

3
≤ 2

3
ε

Hence
∣∣∣(1− 1

e

)
−Pn

∣∣∣< ε and so Pn→ 1− 1
e .
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4.7 Appendix 2: Proof for finite sets

We want to proof the following theorem for finite sets of outcomes, where Vn is the number

of elements in the set and En is the number of alternatives that each otucome is compared

to.

Theorem. Assume that limn→∞
Vn
2En = c and that limn→∞

Vn
En

= 0 then limn→∞Pn = 1−e−c

All the other theorems in the paper are special cases of this. For example, theorem

17 proved in the previous appendix where the outcomes are networks and networks are

compared accroding to the one link deviations criterion, is a special case of theorem where

we haveVn = 2m and En = m for m = n(n−1)/2.

We begin by noticing that

∣∣(1− e−c)−Pn
∣∣≤ ∣∣∣∣∣(1− e−c)−(c− c2

2!
+

c3

3!
−·· ·+ cVn

Vn!

)∣∣∣∣∣+
+

∣∣∣∣∣
(

c− c2

2!
+

c3

3!
−·· ·+ cVn

Vn!

)
−

Vn

∑
k=1

(−1)k−1 In
k

2kEn

∣∣∣∣∣
and the first term can be made arbitrarily small by choice of n (Taylor theorem).

To prove the theorem we must show we can make the second term arbitrarily small for

n big enough.. Begin by noticing that:
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∣∣∣∣∣
(

c− c2

2!
+

c3

3!
−·· ·+ cVn

Vn!

)
−Pn

∣∣∣∣∣=
=

∣∣∣∣∣
(

c− Vn

2En

)
+

(
In
2

22En
− c2

2!

)
+ · · ·+

(
In
Vn

2VnEn
− cVn

Vn!

)∣∣∣∣∣≤
≤

Vn

∑
k=1

∣∣∣∣∣ck

k!
−

In
k

2kEn

∣∣∣∣∣
Next, we get

Vn

∑
k=1

∣∣∣∣∣ck

k!
−

In
k

2kEn

∣∣∣∣∣≤
Vn

∑
k=1

∣∣∣∣∣ 1
k!

[
ck−

(
Vn

2En

)k
]∣∣∣∣∣+ (4.7.1)

+
Vn

∑
k=1

∣∣∣∣∣ 1
k!

(
Vn

2En

)k
−

In
k

2kEn

∣∣∣∣∣
We will work with the two terms above separately and show that by choosing n large

enough both terms can be made arbitrarily small. First, we focus on the first term in 4.7.1 .

We want to show that:

Proposition. For every ε > 0 there exists an N,such that for all n>N we have ∑
Vn
k=1

∣∣∣∣ 1
k!

[
ck−

(
Vn
2En

)k
]∣∣∣∣<

ε

Proof. First we write

∣∣∣∣∣ck−
(

Vn

2En

)k
∣∣∣∣∣=
∣∣∣∣c−( Vn

2En

)∣∣∣∣
∣∣∣∣∣ck−1 + ck−2

(
Vn

2En

)
+ · · ·+ c

(
Vn

2En

)k−2
+

(
Vn

2En

)k−1
∣∣∣∣∣
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Because limn→∞
Vn
2En = c we know that for every ε > 0 there exists a N0 > 0 such that

∀n > N0 :
∣∣∣ Vn

2En − c
∣∣∣ < εIf we let ε = c then we know there exist some Nc > 0 such that

∀n > Nc : Vn
2En < 2c and hence for all n > N0 it holds that

∣∣∣∣∣ck−1 + ck−2
(

Vn

2En

)
+ · · ·+ c

(
Vn

2En

)k−2
+

(
Vn

2En

)k−1
∣∣∣∣∣< 2kck−1

So that given ε > 0 we let N1 = max{N0,Nc} and we get that for all n > N1 :

Vn

∑
k=1

∣∣∣∣∣ 1
k!

[
ck−

(
Vn

2En

)k
]∣∣∣∣∣< ∞

∑
k=1

ε
2kck−1

k!
= ε2e

Next we show a similar proposition regaring the second term in 4.7.1.To prove the

proposition we break the sum in the second term in 4.7.1 into three terms. The first term,

the second up to Mn ≡ Vn
En+1 +1 and the remaining from Mnup:

Vn

∑
k=1

∣∣∣∣∣
[

1
k!

(
Vn

2En

)k
−

In
k

2kEn

]∣∣∣∣∣=
∣∣∣∣( Vn

2En

)
−

In
1

2En

∣∣∣∣+ (4.7.2)

+
Mn

∑
k=2

∣∣∣∣∣
[

1
k!

(
Vn

2En

)k
−

In
k

2kEn

]∣∣∣∣∣+ Vn

∑
k=Mn+1

∣∣∣∣∣
[

1
k!

(
Vn

2En

)k
−

In
k

2kEn

]∣∣∣∣∣
The first term is identically equal to zero since In

1 =Vn for all n.

To show that the second term in 4.7.2can be made arbitrarily small be use the following

lemma:

Lemma. For 2≤ k ≤ Vn
En+1 +1we have:

1
k!

(
Vn

2En

)k
−

In
k

2kEn
≤ 1

2
(En +1)

Vn

1
(k−2)!

(
Vn

2En

)k
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Proof. Proof: Use the lower bound for In
k given by 1

k!Vn [Vn− (En +1)] · · · [Vn− (k−1)(En +1)]and

divide by 2kEn to obtain

1
k!

(
Vn

2En

)k [
1− (En +1)

Vn

]
· · ·
[

1− (k−1)
(En +1)

Vn

]
≤

In
k

2kEn

Next we use the inequality (1− x1) · · ·(1− xk)> 1− (x1 + · · ·+ xk)and obtain that

1
k!

(
Vn

2En

)k [
1− (En +1)

Vn
(1+ · · ·+(k−1))

]
≤

In
k

2kEn

which implies that

1
k!

(
Vn

2En

)k
−

In
k

2kEn
≤ 1

2
(En +1)

Vn

1
(k−2)!

Using the previous lemma we can now show the following.

Proposition. Given ε > 0 there exists a N > 0 such that for all n>N we have ∑
Mn
k=2

∣∣∣∣[ 1
k!

(
Vn
2En

)k
− In

k
2kEn

]∣∣∣∣<
ε .

Proof. We use the bound proved in the previous lemma to get that

∑
Mn
k=2

∣∣∣∣[ 1
k!

(
Vn
2En

)k
− In

k
2kEn

]∣∣∣∣≤ 1
2
(En+1)

Vn
∑

Mn
k=2

1
(k−2)!

(
Vn
2En

)k

By assumption we can pick n big enough so that Vn
2En < 2c and hence we get∑Mn

k=2

∣∣∣∣[ 1
k!

(
Vn
2En

)k
− In

k
2kEn

]∣∣∣∣<
1
2
(En+1)

Vn
4c2

∑
Mn
k=2

1
(k−2)! (2c)k−2and the right hand side is strictly smaller than 1

2
(En+1)

Vn
4c2e4c2

which

converges to zero by the assumption that limn→∞
Vn
En

= 0. The last term in the sum con-

verges to zero since it’s strictly smaller than ∑
Vn
k=Mn+1

∣∣∣∣ 1
k!

(
Vn
2En

)k
∣∣∣∣≤∑

∞
k=Mn+1

1
k! (2c)kand

the right hand side converges to zero since it is the tail of a series that converges( to e2c).

Insert conclusion here.
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