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Abstract: In this paper, we present a deferred-acceptance algorithm for the
model of Matching with Contracts Many-to-many with all the agents�preferences
satisfying Substitutability. Therefore, we provide a constructive proof of the exis-
tence of at least one stable allocation for this model and show that it is the optimal
allocation for the agents which make the o¤ers and the worst stable allocation for
the other market-side. Also, we include a proof of the fact that the set of stable
allocations has lattice structure with respect to the Blair´s partial orderings for
each market-side. Such lattices are dual, so there is a counterposition of interests
between both market-sides. Finally, we use our deferred-acceptance algorithm and
the mentioned lattice structure to calculate the complete set of stable allocations.
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1. Introduction

The model of matching with contracts many-to-one was introduced by Hat�eld
and Milgrom (2005) as a generalization of the model in Kelso and Crawford (1982),
the college admissions problem and ascending package auctions. Some models of
matching with contracts many-to-many are studied in Klaus and Markus (2009);
Hat�eld and Kominers (2012); etc.

As we describe in section 2, the models with contracts many-to many, the set of
agents splits into two disjoint �nite subsets: Doctors and Hospitals. Every contract
is bilateral, involves one doctor and one hospital. A contract should be understood
as a package of conditions, which would characterize the relationship among its
parts if it was signed. Each agent can sign multiple contracts but they must involve
di¤erent agents in the opposite market-side, so that, every pair doctor-hospital
can sign at most one contract in this model. An outcome or allocation is a set of
contracts satisfying the last condition. Each agent has preferences over allocations
with all the contracts involving him. Along all this work, the agents´s preferences
are supposed to satisfy a condition known as substitutability. An allocation is
individually rational if there is not an agent who prefers a proper subset of the set
of contracts that involve him in the allocation rather than his assignment by the
allocation. An individually rational allocation is stable if there is not a contract
which both involved agents would prefer to add to their current set of contracts
(possibly dropping some of such contracts). In this paper, we focus in the set
of stable allocations in markets with contracts many-to-many with sustitutable
preferences of all the agents and extend, from the context without contracts, some
relevant results.

Gale and Shapley (1962) introduced a deferred-acceptance algorithm to com-
pute a stable allocation for each market of matching one-to-one without contracts.
They also proved that the matching obtained from their algorithm was the best
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stable allocation for one market-side and the worst stable allocation for the other
market-side. For the model of matching many-to-one without contracts, Kelso and
Crawford (1982) and Roth (1984) adapted the results of Gale and Shapley (1962).
In section 3 of this paper, we develop two algorithms which, starting from the empty
allocation as input, give respective deferred-acceptance algorithms for the model of
matching with contracts many-to-many, as we explain in section 4. There, we also
show that both stable allocations produced by our deferred-acceptance algorithms
are, respectively, the best stable allocation for one and the other market-side (and
the worst stable allocation for the opposite market-side in every case).

In previous literature, it has been proved that the sets of stable matchings have
lattice structure with respect to certain partial orderings that were de�ned. This
means that the partial orderings arrange the elements in the set so that the least
upper bound (l.u.b.) and the greatest lower bound (g.l.b.) between any pair of such
elements exist and belong to the same set. These results have been useful for the
construction of several algorithms that yield stable matchings; and, in many cases,
they have led to other important discoveries as the coincidence/counterposition of
interests between agents in the same/opposite market-sides respectively.

For the model one-to-one without contracts, Knuth (1976) demonstrated that
the set of all stable allocations is a lattice with respect to the unanimous par-
tial orderings to each market-side. Roth (1985) proved that the l.u.b. and the
g.l.b. proposed by Knuth (1976) did not work in a more general model of matching
many-to-many. Earlier, Blair (1988) introduced a natural extension of the partial
orderings used by Knuth (1976), which endowed the set of stable matchings with
lattice structure in the markets of matching many-to-many with substitutable pref-
erences; he also proved there the existence of a kind of counterposition of interests
between both market-sides. The proofs in Blair (1988) can be traduced in terms
of contracts, producing the mentioned results for the model in Klaus and Markus
(2009), which essentially coincides with the model in Blair (1988). In section 5,
we obtain such results by using our deferred acceptance algorithms to compute the
corresponding l.u.b. and g.l.b. between two any stable allocations: we prove that
the set of stable allocations has lattice structure with respect to the Blair´s par-
tial orderings for each market-side and show the duality between both mentioned
lattices.

In section 6, we use our deferred-acceptance algorithm and the mentioned lat-
tice structure to produce an algorithm which calculates the full set of stable allo-
cations for any market of matching with contracts many-to-many with sustitutable
preferences. We followed the work of Martínez et al (2004) for markets without
contracts, to develop our algorithm and prove that it works.

2. Preliminaries

We consider the model of matching with contracts de�ned in Hat�eld and
Kominers (2012). The markets with contracts have two disjoint sides: a �nite set
of doctors D and a �nite set of hospitals H. The agents from one market-side have
to be assigned to agents in the opposite side through contracts which state the
conditions (salary, schedules, work tasks, etc.) implied by the relationship among
two agents. Such conditions are not �xed beforehand unlike what happens in the
markets without contracts.
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There is a �nite set of contracts X: Each contract matches one doctor xD 2 D
with one hospital xH 2 H and establishes the conditions that would characterize
the relationship among its parts if they signed it. Each agent can sign at most one
contract with each agent in the opposite market-side.

An allocation is a subset that contains at most one contract for each pair
doctor-hospital.

Definition 1. A set of contracts Z � X is an allocation if for all x; y 2 Z;
yD = xD and yH = xH imply x = y

Note that the empty set is an assignment.
Given Y � X a subset of contracts, for each i 2 D [H we denote:

Yi = fx 2 Y : i 2 fxD; xHgg

For each agent i 2 D[H; �i is a strict, transitive and complete binary relation
over the allocations contained in Xi: A pro�le of preferences P is a vector P =
(Pd1 ; :::; PdjDj ; Ph1 ; :::; PhjHj) de�ning the preferences of all the agents in a market.
Here, jDj and jHj represent the cardinalities of D and H respectively and Pi is the
list of preferences of the agent i: As example, Ph : fx; y; zg �h fx; yg �h fx; zg �h
fzg �h ? �h fy; zg �h fyg �h fxg could be the list of preferences of a hospital.

Notation: X �i Y means X �i Y or X = Y:
A particular market with contracts is denoted by (X;P) since it is determined

by the set of all existing contracts X and the preferences pro�le P:
If X contains one and only one contract for each pair doctor-hospital, we can

solve the allocation problem by using an equivalent matching market without con-
tracts and vice versa. Therefore, the markets of matching without contract are
special cases of the model of matching with contracts.

Given Y � X a subset of contracts, we distinguish for each agent i 2 D [ H
the best allocation contained in Yi according to Pi:

Definition 2. Given a subset of contracts Y � X, and an agent i 2 D [H,
the choice set of i given Y is:

Ci (Y ) = max�i

fZ � Yi : Z is an allocationg

Note that Cd (Y ) could be the empty allocation.

Ri (Y ) = Yi �Ci (Y ) is the set of contracts that are rejected by i given the set
of contracts Y:

Example 1. Consider the list of preferences
Pi : fx; y; zg �i fx; yg �i fx; zg �i fzg �i ?i �i fy; zg �i fyg �i fxg.

Here Xi = fx; y; zg : For Y = fy; zg we have Ci (Y ) = fzg and Ri (Y ) = fyg :�
We will use the following notation:

CD (Y ) = [d2DCd (Y ) will be the choice set of all doctors given Y ;
CH (Y ) = [h2HCh (Y ) will be the choice set of all hospitals given Y ;
RD (Y ) = Y � CD (Y ) = [d2DRd (Y ) will be the set of all contracts belonging to
Y which are rejected by doctors;
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RH (Y ) = Y � CH (Y ) = [h2HRh (Y ) will be the set of all contracts belonging to
Y which are rejected by hospitals:

The following properties come from de�nition of the choice set. For all Y � X
and i 2 D [H:

(I) D [H;Ci (Y ) � Y:
(II) Ci (Y ) � Z � Y implies Ci (Z) = Ci (Y ) :
(III) Ci (Ci (Y )) = Ci (Y ) :

At models of matching with contracts, the individual rationality is de�ned in
similar way as in models without contracts. In this work we need also distinguish
the individual rationality for each side of the market.

Definition 3. The allocation Y � X is:
(i) individually rational (IR) if CD (Y ) = CH (Y ) = Y
(ii) individually rational for doctors (IRD) if CD (Y ) = Y
(iii) individually rational for hospitals (IRH) if CH (Y ) = Y:

The concept of stability is an adaptation to this context of the pairwise stability
utilized in models without contracts. See Blair (1988).

Definition 4. Given an allocation Y � X, the contract x 2 XnY is a blocking
contract for Y if

x 2 CxD (Y [ fxg) \ CxH (Y [ fxg)

Definition 5. The allocation Y � X is a stable allocation if
(i) Y is individually rational;
(ii) There are no blocking contracts for Y:

Given a market with contracts (X;P), we denote as S(X;P) the set of all stable
allocations in this market.

For models without contracts it has been proved that S(X;P) is nonempty if the
preferences of all agents satisfy the condition of substitutability, which states that
the agents do not consider as complementary the agents in the opposite market-
side. Hat�eld and Milgrom (2005) introduce an extension of substitutability for
models with contracts and Hat�eld and Kominers (2012) prove the existence of at
least one stable allocation for the model of matching with contracts many to many
where all the agents�preferences satisfy such condition.
In models with contracts the preferences of an agent satisfy substitutability if no
contract stops being chosen because another contract stops being available. This
is, the agents do not consider the contracts as complementary among themselves.

Definition 6. Preferences of agent i 2 D [H satisfy substitutability if

Ri (X) � Ri (Y )
for all sets X, Y such that Xi � Yi � X:

Assuming that preferences of agent i 2 D[H satisfy substitutability, following
Blair (1988) we can justify the next additional properties of the choice set for all
X;Y � X:
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(IV) Ci (X [ Y ) \ X � Ci (X) :In fact, a contract belonging to X which is
chosen by i among the contracts in X [Y; due to the substitutability of preferences
of i; it also will be chosen among contracts belonging to the smaller set X:

(V) Ci (X [ Y ) = Ci (Ci (X) [ Y ) : In fact, every contract in X which belongs
to Ci (X [ Y ) ; also belongs to Ci (X) because of substitutability; therefore the
choice set of i given X [ Y will coincide with the choice set of i given Ci (X) [ Y .

(VI) If X � Y; Ci (Y )�X � Ci (Y �X) : In fact, the contracts which do not
belong to X and belong to the choice set of i given Y , due to the substitutability
of preferences of i; will belong to the choice set of i given the smaller set Y �X.

From Blair (1988) we can obtain a proof of the fact that the nonempty set of
all stable allocations has a lattice structure with respect to the partial orderings
de�ned by him in such paper. This means that if the stable allocations are arranged
according to each of these partial orderings, we can �nd the least upper bound and
the greatest lower bound among two any stable allocations. Later, we will use the
algorithms that we are going to de�ne in the next section to give an alternative
proof of this fact. Next, we include the formal de�nition of lattice.

Definition 7. the set M has a lattice structure with respect to the partial
ordering � if there exist two binary operations _ and ^ on M such that for all
x; y; z 2M the following properties hold:
x _ y 2M
x ^ y 2M
x _ y � x and x _ y � y
x � x ^ y and y � x ^ y
z � x and z � y imply z � x _ y
x � z and y � z imply x ^ y � z

The �rst and second properties say that _ and ^ binary operations on M: The
remaining conditions say that x_y and x^y are, respectively, the least upper bound
and the great lower bound of x and y according to �. The quadruple (M;�;_;^)
is called a lattice on M:

Along this work we will use the following partial orderings to study topics
related to lattice structures.

Definition 8. The allocation Y is unanimously most preferred by the doctors
to the allocation Z (Y �D Z) if for all d 2 D; Yd is strictly preferred by d to Zd
or Yd = Zd. This is the unanimous partial order for doctors .

Definition 9. The allocation Y is unanimously most preferred by the hospitals
to the allocation Z (Y �H Z) if for all h 2 H; Yh is strictly preferred by h to Zh
or Yh = Zh. This is the unanimous partial order for hospitals .

Definition 10. The allocation Y is preferred by the doctors to the allocation
Z according to Blair (Y �BD Z) if for all d 2 D; Cd (Y [ Z) = Yd. This is the
Blair�s partial ordering for doctors .

Definition 11. The allocation Y is preferred by the hospitals to the allocation
Z according to Blair (Y �BH Z) if for all h 2 H; Ch (Y [ Z) = Yh. This is the
Blair�s partial ordering for hospitals .
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Remark 1. Y �BD Z implies Y �D Z; and Y �BH Z implies Y �H Z:

To develop our algorithms, we need to distinguish the following sets of contracts.
Given Y � X; d 2 D and h 2 H :

I(d; Y ) =
n
y 2 Xd : y 2 Cy

H
(Y [ fyg)

o
and

I(h; Y ) =
n
y 2 Xh : y 2 Cy

D
(Y [ fyg)

o
Moreover, we will denote

I(D;Y ) = [
d2D

I(d; Y )

I(H;Y ) = [
h2H

I(h; Y )

Definition 12. Let IPH and IPD be the families of sets of contracts which
satisfy, respectively, the following inclusion properties:

IPD = fY � X=Y � CD (I (D;Y ))g :
IPH = fY � X=Y � CH (I (H;Y ))g

The following properties will be very useful in the development of this work

Lemma 1. Given two sets of contracts Y; Z � X:
i) Y � Z implies I(D;Z) � I(D;Y ) and I(H;Z) � I(H;Y ):
ii) I(d;CH(Z)) = I(d; Z) for every d 2 D and I(h;CD(Z)) = I(h; Z) for every
d 2 D
iii) If Y is an IRH allocation, then Y 2 IPD; if Y is an IRD allocation, then
Y 2 IPH :

Proof. i) Suppose y 2 I(yD; Z); then y 2 Cy
H
(Z [ fyg) and consequently

y 2 CyH (Y [ fyg) since yH has substitutable preferences: Thus y 2 I(yD; Y ):
Therefore, I(D;Z) � I(D;Y ): The proof of I(H;Z) � I(H;Y ) is analogous.
ii) Given d 2 D; we have I(d;CH(Z)) = fy 2 X : y 2 Cy

H
(CH(Z) [ fyg)g:

But Cy
H
(CH(Z) [ fyg) = Cy

H
(Cy

H
(Z) [ fyg) = Cy

H
(Z [ fyg) and consequently

fy 2 X : y 2 Cy
H
(CH(Z) [ fyg)g = fy 2 X : y 2 Cy

H
(Z [ fyg)g = I(d; Z). So,

I(d;CH(Z)) = I(d; Z): The proof of I(h;CD(Z)) = I(h; Z) is analogous.
iii) Given d 2 D; we have Yd � I(d; Y ) because Y is an IRH allocation: This
fact together with the property (IV) of the choice sets imply Cd(I(d; Y )) \ Yd =
Cd(I(d; Y ) [ Yd) \ Yd � Cd(Yd) = Yd. As a consequence, Yd � Cd(I(d; Y )) �
CD (I (D;Y )) : Then, Y 2 IPD: Analogously can be proved that. Y 2 IPH for
every IRD allocation Y . �

3. Doctors O¤ering Algorithm and Hospitals O¤ering Algorithm

In this section, we will develop a constructive demonstration of the existence of
at least one stable allocation for each market of matching with contracts many-to-
many where the agents�preferences satisfy substitutability. For this purpose, we will
present two algorithms: the Doctors O¤ering Algorithm and the Hospitals O¤ering
Algorithm, and we will show their convergence to stable allocations whenever they
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start from an IRH allocation or an IRD allocation respectively. Since the empty
allocation is IR, we can apply to it any of such algorithms to obtain a stable
allocation.

Doctors O¤ering Algorithm (DOA)
Input:
A model of contracts (X; P ) and an IRH allocation Y � X:
Begin:
X0 = Y and i := 0:
Repeat:
Step 1: Determine I

�
D;Xi

�
Step 2: calculate CD

�
I
�
D;Xi

��
Step 3: De�ne Xi+1 = CH

�
CD

�
I
�
D;Xi

���
If Xi+1 = Xi, the algorithm stops with output Xi+1:
If Xi+1 6= Xi, de�ne i := i+ 1 and repeat steps 1 to 3
End

The next example describes the application of the DOA, starting from the
empty allocation, in a particular market.

Example 2. Consider a market (X; P ) such thatX = fx11; x12; x21; y21; x32; y32g
where xij and yij denote two di¤erent contracts involving doctor di and hospital hj,
and the pro�le of preferences P is the following:
Pd1 : fx11; x12g �d1 fx11g �d1 fx12g �d1 ?
Pd2 : fy21g �d2 fx21g �d2 ?
Pd3 : fy32g �d3 fx32g �d3 ?
Ph1 : fx11; x21g �h1 fx11; y21g �h1 fx11g �h1 fx21g �h1 fy21g �h1 ?
Ph2 : fx32g �h2 fy32g �h2 ?
Doctors o¤ering Algorithm:
Input
The market (X; P ) and the IRH allocation ?:
Begin:
Y 0 = ?
Iterations
i = 1
Determine

I(D;Y 0) = fx11; x21; y21; x32; y32g ; in fact:

x 2 CxH (fxg [?) for all x 2 X�fx12g whereas Ch2 (fx12g [?) = ?:
calculate

CD
�
I(D;Y 0)

�
= fx11; y21; y32g in fact:

Cd1(I(d1; Y
0)) = Cd1(fx11g) = fx11g

Cd2(I(d2; Y
0)) = Cd2(fx21; y21g) = fy21g

Cd3(I(d3; Y
0)) = Cd3(fx32; y32g) = fy32g

De�ne
Y 1 = CH(CD

�
I(D;Y 0)

�
) = fx11; y21; y32g in fact:

Ch1(CD
�
I(D;Y 0)

�
) = Ch1(fx11; y21g) = fx11; y21g
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Ch2(CD
�
I(D;Y 0)

�
) = Ch2(fy32g) = fy32g

Since Y 1 6= Y 0; we realize a new iteration.
i = 2
Determine

I(D;Y 1) = fx11; x21; y21; x32; y32g ; in fact:

x11 2 Ch1

�
fx11g [ Y 1

�
= fx11; y21g ;

x12 =2 Ch1

�
fx12g [ Y 1

�
= fx11; y21g ;

x21 2 Ch1

�
fx21g [ Y 1

�
= fx11; x21g ;

y21 2 Ch1

�
fy21g [ Y 1

�
= fx11; y21g ;

x32 2 Ch2

�
fx32g [ Y 1

�
= fx32g ;

y32 2 Ch2

�
fy32g [ Y 1

�
= fy32g

Since I(D;Y 1) = I(D;Y 0), we obtain

CD
�
I(D;Y 1)

�
= CD

�
I(D;Y 0)

�
= fx11; y21; y32g

and
Y 2 = CH(CD

�
I(D;Y 1)

�
) = CH(CD

�
I(D;Y 0)

�
) = fx11; y21; y32g

The algorithm stops because Y 2 = Y 1 = fx11; y21; y32g.
Output
fx11; y21; y32g �

To demonstrate that the previous algorithm stops, �rst we will show that the
allocation Xi; obtained at the end of the iteration i, satis�es Xi � CD

�
I
�
D;Xi

��
,

this is, Xi 2 IPD for all i:

Lemma 2. Suppose that the preferences of all the agents satisfy substitutability.
Let Xi the allocation obtained at the end of the iteration i of the DOA applied from
an IRH allocation. Then Xi is IR and consequently Xi 2 IPD and Xi 2 IPH for
every i:

Proof. Given i � 1; since Xi = CH
�
CD

�
I
�
D;Xi�1��� ; then CH �Xi

�
=

CH
�
CH

�
CD

�
I
�
D;Xi�1���� = CH �CD �I �D;Xi�1��� = Xi; so Xi is IRH.

Moreover, given x 2 Xi = CH
�
CD

�
I
�
D;Xi�1��� ; we have x 2 CxD �I �D;Xi�1�� ;

and x 2 CxD
�
CH

�
CD

�
I
�
D;Xi�1���� = CxD �Xi

�
because CH

�
CD

�
I
�
D;Xi�1��� �

I
�
D;Xi�1� and the hypothesis of substitutability: So, Xi � CD

�
Xi
�
which im-

plies that Xi is IRD.
Therefore, Xi 2 IPD and Xi 2 IPH according to lemma 1 (iii): �

Remark 2. DOA stops because in every iteration all the hospitals improve
weakly and at least one of them improves strictly if Xi+1 6= Xi:
in fact, since Xi 2 IPD; this is, Xi � CD

�
I
�
D;Xi

��
for every i; then for each

h 2 H we obtain

Xi+1
h = Ch

�
CD

�
I
�
D;Xi

���
= Ch

�
Xi [ CD

�
I
�
D;Xi

���
�h Ch

�
Xi
�
= Xi

h

Where the last equality is due to the fact that Xi is an IRH allocation for every
i � 0.
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To prove that the allocation obtained as result of applying the DOA to an IRH
assignment is stable, we will need the following lemma.

Lemma 3. Let Z � X be an IRH allocation such that Z = CD (I (D;Z)).
Then, Z is stable.

Proof. Because of the hypothesis Z is IRH; moreover, Z is IRD since CD (Z) =
CD (CD (I (D;Z))) = CD (I (D;Z)) = Z: Thus Z is IR.
Suppose the existence of a blocking contract for Z, this is, a contract y =2 Z
such that y 2 CyD (Z [ fyg) \ CyH (Z [ fyg): Then, y 2 CyD (Z [ fyg) implies
CyD (Z [ fyg) �yD CyD (Z). Since Z is IR, Zd � Cd (I(d; Z)) � I(d; Z) for all
d 2 D according to lemma 1 (iii) , so Z � I(D;Z). Moreover, y 2 CyH (Z [ fyg)
because y is a blocking contract for Z: Then y 2 I(yD; Z): Therefore Z [ fyg �
I(D;Z). Consequently, CyD (I(D;Z)) �yD CyD (Z [ fyg) �yD CyD (Z) = ZyD :
Thus, ZyD 6= CyD (I(D;Z)) contradicting Z = CD (I (D;Z)) : Therefore, Z is a
stable allocation. �

Lemma 4. Let Xi+1 the outcome of the DOA applied from a IRH allocation.
Then, Xi+1 = CD

�
I
�
D;Xi+1

��
:

Proof. We will prove the double inclusion.
On the one hand Xi+1 � CD

�
I
�
D;Xi+1

��
because, according to lemma 2, Xi+1 2

IPD.
On the other hand, z 2 CD

�
I
�
D;Xi+1

��
implies z 2 I

�
D;Xi+1

�
which means that

z 2 CzH
�
fzg [Xi+1

�
= CzH

�
fzg [ CH

�
CD

�
I
�
D;Xi

����
= CzH

�
fzg [ CD

�
I
�
D;Xi

���
=

CzH
�
CD

�
I
�
D;Xi+1

���
� CH

�
CD

�
I
�
D;Xi+1

���
= CH

�
CD

�
I
�
D;Xi

���
=Xi+1:

Therefore, CD
�
I
�
D;Xi+1

��
� Xi+1: The penultimate inequality is due to Xi+1 =

Xi: �

Theorem 1. Let Xi+1 the outcome of the DOA applied from a IRH allocation.
Then, Xi+1 is stable.

Proof. This theorem is a immediate consequence of lemmas 3 and 4. �

Next, we prove constructively the existence of a stable allocation.

Theorem 2. Let (X; P ) be a market with contracts where the preferences of
all the agents satisfy substitutability. Then, the set of stable allocations S (X; P ) is
nonempty in such market..

Proof. The allocationX0 = ? is IRH. Therefore, we obtain a stable allocation
if we apply the DOA starting from X0 = ?. �

We de�ne the following algorithm where the roles among both sides of the
market are exchanged.

Hospitals O¤ering Algorithm (HOA)
Input:

A model of contracts (X; P ) and an IRD allocation Y � X:
Begin:

X0 = Y and i := 0:
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Repeat:
Step 1: Determine I

�
H;Xi

�
Step 2: Calculate CH

�
I
�
H;Xi

��
Step 3: De�ne Xi+1 = CD

�
CH

�
I
�
H;Xi

���
If Xi+1 = Xi, the algorithm stops with output Xi+1:
If Xi+1 6= Xi, de�ne i := i+ 1 and repeat steps 1 to 3
End.

The demonstration of the fact that the previous algorithm produces a stable
allocation as outcome is analogous to the corresponding proof for the DOA. We
only need to exchange the market-sides.

In the next example, the HOA is applied from the IRD allocation ? in the same
market introduced in example 2. It has illustrative purposes and will be useful later.

Example 3. Consider the market (X; P ) introduced in example 2

Hospitals o¤ering Algorithm:
Input
The market (X; P ) and the IRD allocation ?:
Begin
Y 0 = ?
Iterations
i = 1
Determine

I(H;Y 0) = X in fact:

x 2 CxD (fxg [?) for all x 2 X:
Calculate

CH
�
I(H;Y 0)

�
= fx11; x21; x32g in fact:

Ch1(I(h1; Y
0)) = Ch1(fx11; x21; y21g) = fx11; x21g

Ch2(I(h2; Y
0)) = Ch2(fx12; x32; y32g) = fx32g

De�ne
Y 1 = CD(CH

�
I(H;Y 0)

�
) = fx11; x21; x32g in fact:

Cd1(CH
�
I(H;Y 0)

�
) = Cd1(fx11g) = fx11g

Cd2(CH
�
I(H;Y 0)

�
) = Cd2(fx21g) = fx21g

Cd3(CH
�
I(H;Y 0)

�
) = Cd3(fx32g) = fx32g

Since Y 1 6= Y 0, we realize a new iteration.
i = 2
Determine

I(H;Y 1) = X; in fact:

x11 2 Cd1

�
fx11g [ Y 1

�
= fx11g ;

x12 2 Cd1

�
fx12g [ Y 1

�
= fx11; x12g ;

x21 2 Cd2

�
fx21g [ Y 1

�
= fx21g ;

y21 2 Cd2

�
fy21g [ Y 1

�
= fy21g ;

x32 2 Cd3

�
fx32g [ Y 1

�
= fx32g ;
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y32 2 Cd3

�
fy32g [ Y 1

�
= fy32g :

Since I(H;Y 1) = I(H;Y 0); we obtain

CH
�
I(H;Y 1)

�
= CH

�
I(H;Y 0)

�
= fx11; x21; x32g

and
Y 2 = CD(CH

�
I(H;Y 1)

�
) = CD(CH

�
I(H;Y 0)

�
) = fx11; x21; x32g

The algorithm stops because Y 2 = Y 1 = fx11; x21; x32g.
Output
fx11; x21; x32g �

4. Optimal Allocations

Next theorem proves the existence of a counterposition of interests between
both market-sides relative to the Blair´s partial orderings.

Theorem 3. If Y � X and Z � X are two stable allocations, then: Y �BH Z
if and only if Z �BD Y:

Proof. Suppose that Y �BH Z but Z �BD Y is not ful�lled; this is, there exists
d 2 D such that Cd(Y [ Z) 6= Zd: Then, since d has substitutable preferences and
Z is an IR allocation, a contract y 2 Yd �Z such that y 2 Cd(fyg [Z) must exist:
Moreover, y 2 CyH (fyg[Z) because yH has substitutable preferences and Y �BH Z
implies YyH = CyH (Y [ Z): Thus, the stability of Z is contradicted: Therefore
Z �BD Y:
The fact that Z �BD Y implies Y �BH Z has an analogous proof.: �

Notation: Given an IRH allocation Y � X; we will denote DO(Y ) the stable
allocation obtained as output when the DOA is applied starting from the allocation
Y:
Analogously, given an IRD allocation Y � X; we will denote HO(Y ) the stable
allocation obtained as output when the HOA is applied starting from the allocation
Y:

The following lemma will be a tool to prove that the stable allocations DO(?)
and HO(?) are the stable allocations unanimously more preferred by the doctors
and unanimously more preferred by the hospitals respectively.

Lemma 5. Let Z � X be a stable allocation and suppose that the preferences
of all the agents satisfy substitutability.
i) Assume Y 2 IPD: Then, Z �BH Y if and only if Z �BH DO(Y ):
ii) Assume Y 2 IPH : Then, Z �BD Y if and only if Z �BD HO(Y ):

Proof. i) Let Y = Y 0; Y 1; :::; Y k = DO(Y ): Given i 2 f0; :::; k � 1g ; we have
proved in lemma 2 that Y i 2 IPD; this is, Y i � CD

�
I
�
D;Y i

��
: Moreover Y i+1 =

CH
�
CD

�
I
�
D;Y i

���
; then CH(Y i [ Y i+1) = CH(Y

i [ CH
�
CD

�
I
�
D;Y i

���
) =

CH(Y
i [ CD

�
I
�
D;Y i

��
) = CH(CD

�
I
�
D;Y i

��
) = Y i+1. So, Y i+1 �BH Y i for

every i = 0; :::; k � 1. Consequently, DO(Y ) = Y k �BH Y 0 = Y since �BH is
transitive.
Then, If we assume that Z �BH DO(Y ); we obtain Z �BH DO(Y ) �BH Y:
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Inversely, under the hypothesis Z �BH Y = Y 0, we will prove that Z �BH Y i implies
Z �BH Y i+1 for every i = 0; 1; :::k � 1: This will allow us to conclude inductively
that Z �BH Y k = DO(Y ):
Given i 2 f0; :::; k � 1g ; suppose Z �BH Y i so that CH(Z [ Y i) = Z: Because
of substitutability, the later implies z 2 CzH (Y

i [ fzg) for every z 2 Z: Thus
Z � I(D;Y i): Therefore

CDI(D;Y
i) � I(H;Z) (I)

in fact: x 2 CD
�
I(D;Y i)

�
= CD

�
I(D;Y i) [ Z [ fxg

�
implies x 2 CxD (Z [ fxg)

due to substitutability:
If we prove that CH(Y i+1 [ Z) � Z; then CH(Y i+1 [ Z) � Z � Y i+1 [ Z would
imply CH(Y i+1 [ Z) = CH(Z) = Z and the proof would be completed
According to lemma 2 Y i 2 IPD; this is, Y i � CD

�
I(D;Y i)

�
: Set Si = CD

�
I(D;Y i)

�
�

Y i: Then CH(Y i+1 [ Z) = CH(CH
�
CD

�
I
�
D;Y i

���
[ Z) = CH(CD

�
I
�
D;Y i

��
[

Z) = CH(S
i [ Y i [ Z): So:

CH(Y
i+1 [ Z) = CH(Si [ Y i [ Z) (II)

Given a contract y 2 CH(Y i+1[Z), we have to prove that y 2 Z: For this purpose,
we will analyze separately the cases y 2 Si and y =2 Si:
a) Suppose y =2 Si: Substitutability and (II) imply y 2 CH(Y i [ Z) = Z:
b) Suppose y 2 Si: Then y 2 CD

�
I(D;Y i)

�
and consequently y 2 I(H;Z) accord-

ing to (I). This is to say that y 2 CyD (Z [ fyg): Moreover, y 2 CyH (Z [ fyg) due
to substitutability. Then, y 2 Z because in opposite case y would be a blocking
contract for the stable allocation Z; which is a contradiction. �

Theorem 4. Let (X; P ) be a market with contracts where all the agents have
substitutable preferences. Then,

HO(?) �BH Y �BH DO(?) and DO(?) �BD Y �BD HO(?):
for every stable allocation Y � X

Proof. Let Y � X be a stable allocation. Since ? 2 IPD, ? 2 IPH ; Y �BH ?
and Y �BD ?; according to lemma 5 we have Y �BH DO(?) and Y �BD HO(?):
Then, due to the counterposition of interests proved in theorem 3, we also obtain
HO(?) �BH Y and DO(?) �BD Y . �

Given two stable allocations Y; Z � X such that Y �BH Z; we have already
mentioned that Y �H Z; analogously Y �BD Z; implies Y �D Z. As a conse-
quence, theorem 4 implies that HO(?) is the stable allocation unanimously most
preferred by the hospitals and the stable allocation unanimously least preferred by
the doctors; whereas DO(?) is the stable allocation unanimously most preferred by
the doctors and the stable allocation unanimously least preferred by the hospitals.
Formally,

Corollary 1. Let (X; P ) be a market with contracts where all the agents have
substitutable preferences. Then,

HO(?) �H Y �H DO(?) and DO(?) �D Y �D HO(?):
for every stable allocation Y � X
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Remark 3. The application of the DOA starting from the allocation ?, con-
stitutes an extension of the algorithm of deferred acceptance introduced by Gale and
Shapley (1962) to the model with contracts; in such algorithm the doctors o¤er and
the hospitals accept or reject o¤ers. The steps can be described as follows: bearing
in mind the set of all the contracts that are acceptable to the involved hospital, each
doctor selects the �rst subset of such set according to his list of preferences and o¤er
them to the corresponding hospitals. Then, every hospital considers the set of all
the o¤ers that it has just received and chooses the subset of received o¤ers that it
likes best according to its preferences. In the following iteration of the algorithm, the
doctors bear in mind only the contracts that the hospitals would want to sign if they
had the contracts that they accepted in the previous iteration also available (observe
that all the contracts that were chosen by a hospital in the previous iteration satisfy
this requirement, whereas the contracts that were rejected by the involved hospital in
a previous iteration do not satisfy the requirement, so they cannot be o¤ered again);
then, each doctor selects its most preferred subset of the just described set and of-
fers the contracts belonging to such subset to the corresponding hospitals; next, the
hospitals choose their most preferred subset of just received o¤ers and the iteration
ends. The algorithm stops when all the hospitals accept exactly the same contracts
in two consecutive iterations.
The application of the HOA starting from the allocation ? also extends the algo-
rithm of deferred acceptance introduced by Gale and Shapley (1962) to the model
with contracts, but in this case the hospitals o¤er and the doctors accept or reject
o¤ers.

5. Lattice Structure

Let (X; P ) be a market of matching with contracts many-to-many where the
preferences of all the agents satisfy substitutability. In this section we will prove
that the set of all the stable allocations S(X; P ) is a lattice with respect to the
Blair�s partial ordering for hospitals �BH . Symmetrically, it is possible to show that
S(X; P ) is a lattice with respect to the Blair�s partial ordering for doctors �BD; and
because of the counterposition of interests relative to the Blair´s partial orderings
that we have shown in theorem 3, we can conclude that both lattices are dual:

According to the de�nition of lattice included in the preliminaries of this work,
given two stable allocations Z and Y; we have to �nd the stable allocations Y _H Z
and Y ^H Z which are, respectively, the least upper bound and the greatest lower
bound for Z and Y relative to �BH . We will demonstrate that the above mentioned
bounds exist and can be calculated using the algorithms DOA and HOA. For any
couple of stable assignments Z and Y , we de�ne:

Y _H Z = DO(CH (Y [ Z))
and

Y ^H Z = HO(CD (Y [ Z)):
The following lemma demonstrates that the operations _H and ^H are closed in
S(X; P ).

Lemma 6. Let Y � X and Z � X be two stable allocations, Suppose that the
preferences of all the agents satisfy substitutability. Then, DO(CH (Y [ Z)) and
HO(CD (Y [ Z)) are stable allocations.
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Proof. CH (Y [ Z) is an IRH allocation and CD (Y [ Z) is an IRD allocation,
therefore DO(CH (Y [ Z)) and HO(CD (Y [ Z)) are stable allocations. �

Next lemma proves that _H and ^H calculate, respectively, the least upper
bound and the greatest lower bound, relative to �BH ; for two any stable allocations.

Lemma 7. Let Y � X and Z � X be two stable allocations. Then,
i) DO(CH (Y [ Z)) �BH Y and DO(CH (Y [ Z)) �BH Z:
ii) If W � X is a stable allocation such that W �BH Y and W �BH Z, then
W �BH DO(CH (Y [ Z)):
iii) Y �BH HO(CD (Y [ Z)) and Z �BH HO(CD (Y [ Z)).
iv) If W � X is a stable allocation such that Y �BH W and Z �BH W; then
HO(CD (Y [ Z)) �BH W:

Proof. i) Let CH (Y [ Z) = X0; :::; Xk = DO(CH (Y [ Z)) be the succes-
sion of allocations that is obtained through the DOA starting from the alloca-
tion CH (Y [ Z) : We will prove inductively that CH

�
Y [Xi

�
= Xi for every

i 2 f0; :::; kg :
First, CH

�
Y [X0

�
= CH (Y [ CH (Y [ Z)) = CH (Y [ Y [ Z) = CH (Y [ Z) =

X0:
Supposing that CH

�
Y [Xi

�
= Xi, we have to prove that CH

�
Y [Xi+1

�
= Xi+1:

According to lemma 2, Xi 2 IPD, this is, Xi � CD
�
I
�
D;Xi

��
. Consequently,

CH
�
Y [Xi+1

�
= CH

�
Y [ CH

�
CD

�
I
�
D;Xi

����
= CH

�
Y [ CD

�
I
�
D;Xi

���
=

CH
�
Y [Xi [ CD

�
I
�
D;Xi

���
= CH

�
CH

�
Y [Xi

�
[ CD

�
I
�
D;Xi

���
=

CH
�
Xi [ CD

�
I
�
D;Xi

���
= CH

�
CD

�
I
�
D;Xi

���
= Xi+1:

In particular, CH
�
Y [Xk

�
= Xk; this is, DO(CH (Y [ Z)) �BH Y:

Analogously can be proved that DO(CH (Y [ Z)) �BH Z:
ii)W �BH Y andW �BH Z means CH(Y [W ) =W and CH(Z[W ) =W respectively
Therefore, CH(CH(Z[Y )[W ) = CH(Z[Y [W ) = CH(CH(Z[W )[CH(Y [W )) =
CH(W ) = W: So, W �BH CH (Y [ Z) which implies W �BH DO(CH (Y [ Z)) ac-
cording to lemma 5 (i).
iii) If we reverse the roles of the sides of the market, and develop again the proof of
(i), we obtain HO(CD (Y [ Z)) �BD Y and HO(CD (Y [ Z)) �BD Z: Consequently,
Y �BH HO(CD (Y [ Z)) and Z �BH HO(CD (Y [ Z)) due to the counterposition of
interests relative to the Blair´s partial orderings shown in theorem 3 :
iv) If we reverse the roles of the sides of the market, and develop again the proof of
(ii), we obtain W �BD HO(CD (Y [ Z)): So, using again the counterposition of in-
terests relative to the Blair´s partial orderings shown in theorem 3, we demonstrate
that Y �BH W and Z �BH W imply HO(CD (Y [ Z)) �BH W: �

Lemmas 6 and 7 together prove the next theorem.

Theorem 5. Let (X; P ) be a market of matching with contracts many-to-many
where the preferences of all the agents satisfy substitutability. Then, (S(X; P );�BH
;_H ;^H) is a lattice.
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Symmetrically, we can de�ne the following operations between two any stable
allocations Y and Z:

Y _D Z = HO(CD (Y [ Z))
and

Y ^D Z = DO(CH (Y [ Z)):
If we reverse the roles of the market-sides, and develop again this section, we achieve
the next theorem:

Theorem 6. Let (X; P ) be a market of matching with contracts many-to-many
where the preferences of all the agents satisfy substitutability. Then, (S(X; P );�BD
;_D;^D) is a lattice.

In conclusion, the set S(X; P ) is a lattice with respect to the Blair�s partial
ordering for hospitals and with respect to the Blair�s partial ordering for doctors.
Moreover, such lattices are dual according to the counterposition of interests shown
in theorem 3.

6. Algorithm to compute the full set of stable allocations

In this section we introduce an algorithm that calculates the complete set of
stable allocations for every market of contracts where the preferences of all the
agents satisfy substitutability. For it, we use the results of the previous sections
and follow the work of Martinez et al (2003).

Through this section, we will consider a �xed model of contracts (X; P ) where
P is a pro�le of substitutable preferences.

Definition 13. Given the original pro�le of preferences P and the contract
x 2 X, the x-truncation of P is the pro�le P x such that:
1) All sets containing x are unacceptable to xH according to P xxH , this is

x 2 S =) ? �xxH S:
2) PxH and P xxH coincide over all the sets that do not contain x, this is

x =2 S1 [ S2 implies S1 �xxH S2 () S1 �xH S2:
3) PxH and P xxH coincide over all the sets containing x, this is

x 2 S1 \ S2 implies S1 �xxH S2 () S1 �xH S2:
4) All sets made unacceptable in P xxH are preferred to the original unacceptable sets,
this is,
If S1; S2 � X are such that x 2 S1 and S1 �xH ? �xH S2; then S1 �xxH S2:
5) For every i 2 D [H n fxHg and S1; S2 � Xi we have S1 �xi S2 () S1 �i S2:

Conditions 3 and 4 are irrelevant for stability of allocations, but they guarantee
the uniqueness of the x-truncation of P .

We have already shown that DO(?) and HO(?) are respectively the optimal
for doctors and the optimal for hospitals stable allocations in the market (X; P ):We
use the original pro�le of preferences P to calculate them. If we use the x-truncation
of P instead of P to run the algorithms, then we obtain for the market (X; P x); the
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optimal for doctors stable allocation DO
x (?) and the optimal for hospitals stable

allocation HO
x (?).

Cx (:) and Rx (:) will denote the choice set and the rejected set in the market
(X; P x); the set of all stable allocations in such market will be denoted S(X; P x):

To calculate the set S(X; P ) containing all the allocations which are stable
under the original pro�le of preferences P , the following procedure must be iterated.
First, compute the optimal allocation HO (?) and DO (?).
Second, for each x 2 HO (?)nDO (?) ; obtain x-truncation P x and, using this new
pro�le of preferences, compute the corresponding optimal for hospitals allocation
HO
x (?).

Third, given x 2 HO (?) n DO (?), It may occur that HO
x (?) =2 S(X; P ). Later

we will see that, the stability of HO
x (?) with respect to the original pro�le P is

ensured if HO
x (?) satis�es CxD

�
HO (?) [HO

x (?)
�
= HO

x (?)xD : In such case, we
keep HO

x (?) and start again from the beginning with P x as input.
The algorithm stops when a new truncation is not possible because there is not
a contract in the complement of DO (?) belonging to the optimal for hospitals
allocation corresponding to the current truncated pro�le.
In the formal de�nition of the algorithm there is a dispensable step that improves
the algorithm.

Algorithm to compute the complete set of stable allocations

Input
A market of contracts (X; P )

Begin
Set T 0(X; P ) := P , S0(X; P ) :=

�
HO (?)

	
and k := 0

Repeat
Step 1: De�neeT (T k(X; P )) = �P x1:::xKx : x 2 HO

x1:::xK (?) nD
O (?) ^ P x1:::xK 2 T k(X; P )

	
Step 2: If eT (T k(X; P )) = ? set T k+1(X; P ) = ? and Sk+1(X; P ) = Sk(X; P ):
else for each truncation P x1:::xkx 2 eT (T k(X; P )) 6= ? obtain the allocationHO

x1:::xKx (?),
which exists according to lemma 9
Step 3: De�ne

T �(T k(X; P )) =
n
P x1:::xkx 2 eT (T k(X; P )) : CxD ��HO

x1:::xKx (?)
�
[
�
HO
x1:::xK (?)

��
=
�
HO
x1:::xKx (?)

�
xD

o
Order the set T �(T k(P )) in an arbitrary way and let �k+1 denote this ordering.
Step 4: De�nebT (T k(X; P )) ={P x1:::xkx 2 T �(T k(X; P )) : 8P x01:::x0kx0 2 T �(T k(X; P ))
such that P x1:::xkx �k+1 P x01:::x0kx0 ; x0 2 HO

x1:::xKx (?)}
Set T k+1(X; P ) := bT (T k(X; P ));
Sk+1(X; P ) := Sk(X; P ) [

�
HO
x1:::xKx (?) : P

x1:::xkx 2 T k+1(X; P )
	

and k := k + 1

Until T k(X; P ) = ?:
End.

In the following example, we consider the market introduced in example 2 and
calculate its corresponding full set of stable allocations. For a better exposition,
some calculations will be realized in the appendix.
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Example 4. Consider the market (X; P ) introduced in example 2. The doc-
tors� optimal allocation and the hospitals� optimal allocation for this market are
DO (?) = fx11; y21; y32g and HO (?) = fx11; x21; x32g ; respectively. They were
calculated in examples 2 and 3.

Input
the market (X; P ) introduced in example 1.
Begin
Set T 0(X; P ) := P , S0(X; P ) :=

�
HO (?)

	
Iterations
i = 1
De�neeT (T 0(X; P )) = �Pw : w 2 HO (?) nDO (?) ^ P 2 T 0(X; P )

	
= fP x21 ; P x32g

Since eT (T k(X; P )) 6= ? , obtain for each of its truncations the corresponding hospi-
tals�optimal allocation: HO

x21; (?) = fx11; y21; x32g and H
O
x32 (?) = fx11; x21; y32g

(see the calculations in the appendix).
De�ne

T �(T 0(X; P )) =
n
Pw 2 eT (T 0(X; P )) : CxD �HO

w (?) [HO (?)
�
=
�
HO
w (?)

�
xD

o
=

fP x21 ; P x32g
in fact, Cd2

�
HO
x21 (?) [H

O (?)
�
= Cd2 (fy21g [ fx21g) = fy21g =

�
HO
x21 (?)

�
d2

and Cd3
�
HO
x32 (?) [H

O (?)
�
= Cd3 (fy32g [ fx32g) = fy32g =

�
HO
x32 (?)

�
d3
:

Considering the ordering P x21 �1 P x32 over the pro�les in T �(T 0(X; P )); de�nebT (T 0(X; P )) ={Pw 2 T �(T 0(X; P )) : 8Pw0 2 T �(T 0(X; P )) such that Pw �1
Pw

0
; w0 2 HO

w (?)} = fP x21 ; P x32g
in fact, x32 2 HO

x21; (?) which implies P
x21 2 bT (T 0(X; P )); and P x32 2 bT (T 0(X; P ))

due to the de�nition of �1 :
Then, set T 1(X; P ) := bT (T 0(X; P )) = fP x21 ; P x32g ;
S1(X; P ) := S0(X; P ) [

�
HO
w (?) : Pw 2 T 1(X; P )

	
So S1(X; P ) =

�
HO (?) ;HO

x21 (?) ;H
O
x32 (?)

	
: This �nishes the �rst stage.

Since T 1(X; P ) 6= ?; realize a new iteration.
i = 2
De�neeT (T 1(X; P )) = �Pwz : z 2 HO

w (?) nDO (?) ^ Pw 2 T 1(X; P )
	
= fP x21x32 ; P x32x21g

Since eT (T 1(X; P )) 6= ? , obtain for each of its truncations the corresponding hos-
pitals�optimal allocation:
HO
x21x32 (?) = H

O
x32x21 (?) = fx11; y21; y32g (see the calculations in the appendix).

De�ne

T �(T 1(X; P )) =
n
Pwz 2 eT (T 1(X; P )) : CxD �HO

wz (?) [HO (?)
�
=
�
HO
wz (?)

�
xD

o
=

fP x21x32 ; P x32x21g
In fact, Cd3

�
HO
x21x32 (?) [H

O (?)
�
= Cd3 (fy32g [ fx32g) = fy32g =

�
HO
x21x32 (?)

�
d3

and Cd2
�
HO
x32x21 (?) [H

O (?)
�
= Cd2 (fy21g [ fx21g) = fy21g =

�
HO
x32x21 (?)

�
d2
:

Considering the ordering P x21x32 �2 P x32x21 over the pro�les in T �(T 1(X; P )); de-
�nebT (T 1(X; P )) ={Pwz 2 T �(T 0(X; P )) : 8Pw0z0 2 T �(T 0(X; P )) such that Pwz �2
Pw

0z0 ; z0 2 HO
wz (?)} = fP x32x21g

in fact, P x21x32 =2 bT (T 1(X; P )) because x32 =2 HO
x32x21 (?), and P

x32x21 2 bT (T 1(X; P ))
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due to the de�nition of �2.
Then, set T 2(X; P ) := bT (T 1(X; P )) = fP x32x21g
S2(X; P ) := S1(X; P ) [

�
HO
wz (?) : Pwz 2 T 2(X; P )

	
So S2(X; P ) =

�
HO (?) ;HO

x21 (?) ;H
O
x32 (?) ;H

O
x32x21 (?)

	
This �nishes the �rst

stage.
Since T 2(X; P ) 6= ?; realize a new iteration.
i = 3
De�neeT (T 2(X; P )) = �Pwzu : u 2 HO

wz (?) nDO (?) ^ Pwz 2 T 2(X; P )
	
= ?

Since eT (T 2(X; P )) = ?, set T 3(X; P ) = ? and
S3(X; P ) = S2(X; P ) = HO (?) ;HO

x21 (?) ;H
O
x32 (?) ;H

O
x32x21 (?)

End.

Therefore, the complete set of stable allocations for the market (X; P ) is:
S(X; P ) = S3(X; P ) =

�
HO (?) ;HO

x21 (?) ;H
O
x32 (?) ;H

O
x32x21 (?)

	
=

ffx11; x21; x32g ; fx11; y21; x32g ; fx11; x21; y32g ; fx11; y21; y32gg : �

Hereinafter, we will prove that our algorithm works.

Theorem 7. Let K be the stage where the algorithm to compute the com-
plete set of stable allocations stops, i.e., TK(X; P ) = ?: If the preferences of
all the agents satisfy substitutability in the original pro�le of preferences P; then
SK(X; P ) = S(X; P ):

Before demonstrating the previous theorem, it is necessary to prove some lem-
mas.

Lemma 8. Given A � X; CxxH (A) = CxH (A n fxg) :

Proof. Since all subsets of A containing x are unacceptable for xH according
to the preferences P xxH ; C

x
xH (A) is the subset of A n fxg in the top of the list

of preferences P xxH . Such set is CxH (A n fxg) according to the de�nition of x-
truncation. �

Lemma 9. Given a contract x 2 X, suppose that the original preferences of
xH ; PxH , satisfy substitutability. Then, the modi�ed preferences P

x
xH also satisfy

substitutability:

Proof. Given X � Y � X; we will show that RxxH (X) � R
x
xH (Y ) :

Suppose that z =2 RxxH (Y ) ; then, three cases are possible:
i) z =2 YxH , so z =2 XxH and consequently z =2 RxxH (X) :
ii) z 2 CxxH (Y ) \ X; then z 2 CxH (Y n fxg) according to lemma 8: This implies
z 2 CxH (X n fxg) due to substitutability. Thus, z 2 CxxH (X) because of lemma 8.
Therefore, z =2 RxxH (X) :
iii) z 2 CxxH (Y ) nX; then z =2 R

x
xH (X) : �

Given a contract x 2 X, let Sx(X; P ) denote the set of allocations that are
stable under the pro�le of preferences P x and satisfy the following condition

Sx(X; P ) =
�
X 2 S(X; P x)=CxD

�
X [HO (?)

�
= XxD
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In lemma 10 we will prove that Sx(X; P ) � S(X; P ) for all x 2 HO (?) nDO (?).
So, the condition CxD

�
X [HO (?)

�
= XxD is enough to ensure the stability under

the original pro�le of preferences P of the allocation X which is stable with respect
to P x:

Lemma 10. Given x 2 HO (?)nDO (?) : If X 2 Sx(X; P ); then X 2 S(X; P ).

Proof. First, x =2 X because X is an individually rational allocation under
the pro�le P x according to the hypothesis; and every set of contracts containing x is
unacceptable to xH under the pro�le P x. As a consequence, Ci (X) = Cxi (X) = Xi
for every i 2 D [H: So, X is an individually rational allocation under the original
pro�le of preferences P .
Second, assume the existence of a contract y 2 XnX such that y 2 CyH (X [ fyg)\
CyD (X [ fyg) :
Observe that y 6= x. In fact, if y = x then y 2 HO (?)nX and CyD

�
X [HO (?)

�
=

XyD (due to the hypothesis x 2 HO (?) and X 2 Sx(X; P ) respectively); conse-
quently, y =2 CyD (X [ fyg) because of substitutability; this is a contradiction:
Therefore, x =2 X [ fyg and, as a consequence, Ci (X [ fyg) = Cxi (X [ fyg) for all
i 2 D [H:
So, the assumption about the existence of a contract y 2 X n X: such that y 2
CyH (X [ fyg) \ CyD (X [ fyg) implies the existence of a contract y 2 X n X
such that y 2 CxyH (X [ fyg) \ CxyD (X [ fyg) contradicting the hypothesis X 2
S(X; P x): �

Lemma 11. Let P x be a x-truncation such that CxD
�
HO (?) [HO

x (?)
�
=�

HO
x (?)

�
xD
and x 2 HO (?)nDO (?) : Then, X 2 S(X; P x) implies X 2 S(X; P ):

Proof. X 2 S(X; P x) implies CxxD
�
X [HO

x (?)
�
= XxD : In fact, P

x is a
pro�le of substitutable preferences, so S(X; P x) is a lattice with respect to the
Blair�s partial ordering for doctors as we proved in the previous section, andHO

x (?)
is the worst stable allocation according to such partial ordering. Since xD has the
same preferences under both pro�les P x and P , we have CxD

�
X [HO

x (?)
�
= XxD :

Because of the hypothesis, CxD
�
HO (?) [HO

x (?)
�
=
�
HO
x (?)

�
xD
: Then,

CxD
�
X [HO (?)

�
= XxD due to the transitivity of the partial ordering: So, X 2

Sx(X; P ) which implies X 2 S(X; P ) according to lemma 10.: �

Lemma 12. Let X be an allocation such that X 2 S (X; P ) and Cxi (X) = Xi
for all i 2 D [H: Then, X 2 S (X; P x) :

Proof. Observe that x =2 X because X is an individually rational allocation
under the pro�le of preferences P x; and no set of contracts containing x is acceptable
for xH under such pro�le.
Suppose the existence of a contract y 2 X n X such that y 2 CxyH (X [ fyg) \
CxyD (X [ fyg) : Observe that y 2 CxyH (X [ fyg) implies x 6= y:
So, x =2 X [ fyg : As a consequence, for every i 2 D [H we have Cxi (X [ fyg) =
Ci (X [ fyg) :
Then, the contract y 2 X nX also satis�es y 2 CyH (X [ fyg)\CyD (X [ fyg) and
the hypothesis X 2 S (X; P ) is contradicted. �
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Corollary 2. Let P x and P y be two truncations of the pro�le P such that
HO
x (?) 2 S (X; P ) and HO

y (?) 2 S (X; P ) : If x =2 HO
y (?) ; then HO

y (?) 2
S (X; P x) :

Proof. HO
y (?) 2 S (X; P ) implies HO

y (?)i = Ci
�
HO
y (?)

�
for every i 2

D [ H: Since x =2 HO
y (?) ; it follows that HO

y (?)i = Cxi
�
HO
y (?)

�
8i 2 D [ H:

Then, HO
y (?) 2 S (X; P x) according to lemma 12: �

Lemma 13. If x 2 HO (?) \DO (?), then x 2 X for every X 2 S (X; P ) :

Proof. Assume x 2 HO (?) \ DO (?) but x =2 X 0 for some X 0 2 S (X; P ) :
Since S (X; P ) is a lattice with respect to the Blair�s partial ordering for hospitals
and with respect to the Blair�s partial ordering for doctors, as we proved in the previ-
ous section, we have CxH

�
HO (?) [X 0� = �HO (?)

�
xH
and CxD

�
DO (?) [X 0� =�

DO (?)
�
xD
: As a consequence, x 2 CxH

�
HO (?) [X 0� \ CxD �DO (?) [X 0�.

Then, x 2 CxH (fxg [X 0) \ CxD (fxg [X 0) since xH and xD have substitutable
preferences. So, X 0 2 S (X; P ) is contradicted. �

Lemma 14. If X 2 S (X; P ) is an allocation such that X 6= HO (?) ; then
X 2 S (X; P x) for some pro�le P x with x 2 HO (?) nDO (?) and x =2 X:

Proof. X 6= HO (?) implies the existence of a contract x 2 HO (?) nX. In
fact, in other case, HO (?) � X together with the lattice structure of S (X; P )
with respect to the Blair�s partial ordering for hospitals would imply HO (?) =
CH

�
HO (?) [X

�
= CH (X) = X which is a contradiction.

Since x =2 X; lemma 13 implies x =2 DO (?) : Consider the pro�le P x. Observe that
Cxi (X) = Xi for all i 2 D[H because Ci (X) = Xi for every i 2 D[H and x =2 X.
Then, X 2 S (X; P x) according to lemma 12: �

Remark: Let P x be a truncated pro�le of preferences such that x 2 HO (?)nDO (?)
and HO

x (?) satis�es CxD
�
HO (?) [HO

x (?)
�
=
�
HO
x (?)

�
xD
: Then, S (X; P ) �

S (X; P x) according to lemma 11 and HO (?) =2 S (X; P x) because no set of
contracts containing x is acceptable for xH under P x. Therefore,j S (X; P ) j>j
S (X; P x) j :

Corollary 3. If X 2 S (X; P ) is an allocation such that X 6= HO (?), then
a succession of contracts x1; :::; xn such that X = HO

x1:::xn (?) 2 S (X; P x1:::xn)
exists:

Proof. By hypothesis, X 2 S (X; P )and X 6= HO (?). Then, X 2 S (X; P x)
for some pro�le P x with x 2 HO (?) nDO (?) and x =2 X according to lemma 14:
If X = HO

x (?) ; the proof ends. Else, because of the above remark, j S (X; P ) j>j
S (X; P x) j; then, we apply again lemma 14 replacing P and X with P x and HO

x (?)
respectively. Since j S (X; P ) j<1, the statement of corollary 3 follows: �
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Proof of theorem 7 : First, lemma 11 implies S1 (X; P ) � S (X; P ). Applying
iteratively lemma 11to successive stages , we have SK (X; P ) � S (X; P ) :
Second, suppose that X 2 S (X; P ) : Then, there exists k � K such that X 2
Sk (X; P ) according to corollary 3: Consequently, S (X; P ) � SK (X; P ) :
Therefore, S (X; P ) = SK (X; P ) : �

7. Appendix

I) Calculation of the hospitals�optimal allocation under the truncated pro�le
P x21 using the HOA:

P x21d1
: fx11; x12g �h1 fx11g �h1 fx12g �h1 ?

P x21d2
: fy21g �d2 fx21g �d2 ?

P x21d3
: fy32g �d3 fx32g �d3 ?

P x21h1
: fx11; y21g �h1 fx11g �h1 fy21g �h1 ?

P x21h2
: fx32g �h2 fy32g �h2 ?

Input
X = fx11; x12; x21; y21; x32; y32g ; the pro�le of substitutable preferences P x21 ; the
IRD allocation ?:
Begin:
Y 0 = ?
i = 1
Calculate

I(H;Y 0) = X in fact:

x 2 CxD (fxg [?) for all x 2 X:
Obtain

CH
�
I(H;Y 0)

�
= fx11; y21; x32g in fact:

Ch1(I(h1; Y
0)) = Ch1(fx11; x21; y21g) = fx11; y21g; Ch2(I(h2; Y 0)) = Ch2(fx12; x32; y32g) =

fx32g
De�ne

Y 1 = CD(CH
�
I(H;Y 0)

�
) = fx11; y21; x32g in fact:

Cd1(CH
�
I(H;Y 0)

�
) = Cd1(fx11g) = fx11g ; Cd2(CH

�
I(H;Y 0)

�
) = Cd2(fy21g) =

fy21g; Cd3(CH
�
I(H;Y 0)

�
) = Cd3(fx32g) = fx32g

Since Y 1 6= Y 0; realize a new iteration.
i = 2
Calculate

I(H;Y 1) = fx11; x12; y21; x32; y32g in fact:

x11 2 C
d1

�
fx11g [ Y 1

�
= fx11g ; x12 2 C

d1

�
fx12g [ Y 1

�
= fx11; x12g ; x21 =2

C
d2

�
fx21g [ Y 1

�
= fy21g ; y21 2 Cd2

�
fy21g [ Y 1

�
= fy21g ; x32 2 Cd3

�
fx32g [ Y 1

�
=

fx32g ; y32 2 Cd3

�
fy32g [ Y 1

�
= fy32g :

Obtain
CH

�
I(H;Y 1)

�
= fx11; y21; x32g in fact:
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Ch1(I(h1; Y
1)) = Ch1(fx11; y21g) = fx11; y21g

Ch2(I(h2; Y
1)) = Ch2(fx12; x32; y32g) = fx32g

De�ne

Y 2 = CD(CH
�
I(H;Y 1)

�
) = fx11; y21; x32g in fact:

Cd1(CH
�
I(H;Y 1)

�
) = Cd1(fx11g) = fx11g ; Cd2(CH

�
I(H;Y 1)

�
) = Cd2(fy21g) =

fy21g ; Cd3(CH
�
I(H;Y 1)

�
) = Cd3(fx32g) = fx32g

Since Y 2 = Y 1 the algorithm stops.
Output
fx11; y21; x32g

II) Calculation of the hospitals�optimal allocation under the truncated pro-
�le P x32 using the HOA.

P x32d1
: fx11; x12g �h1 fx11g �h1 fx12g �h1 ?

P x32d2
: fy21g �d2 fx21g �d2 ?

P x32d3
: fy32g �d3 fx32g �d3 ?

P x32h1
: fx11; x21g �h1 fx11; y21g �h1 fx11g �h1 fx21g �h1 fy21g �h1 ?

P x32h2
: fy32g �h2 ?

Input
X = fx11; x12; x21; y21; x32; y32g ; the pro�le of substitutable preferences P x32 ; the
IRD allocation ?:
Begin:
Y 0 = ?
i = 1
Calculate

I(H;Y 0) = X in fact:

x 2 CxD (fxg [?) for every x 2 X:
Obtain

CH
�
I(H;Y 0)

�
= fx11; x21; y32g in fact:

Ch1(I(h1; Y
0)) = Ch1(fx11; x21; y21g) = fx11; x21g ; Ch2(I(h2; Y 0)) = Ch2(fx12; x32; y32g) =

fy32g
De�ne

Y 1 = CD(CH
�
I(H;Y 0)

�
) = fx11; x21; y32g in fact:

Cd1(CH
�
I(H;Y 0)

�
) = Cd1(fx11g) = fx11g ; Cd2(CH

�
I(H;Y 0)

�
) = Cd2(fx21g) =

fx21g ; Cd3(CH
�
I(H;Y 0)

�
) = Cd3(fy32g) = fy32g

Since Y 1 6= Y 0 realize a new iteration
i = 2
Calculate

I(H;Y 1) = fx11; x12; x21; y21; y32g in fact:

x11 2 C
d1

�
fx11g [ Y 1

�
= fx11g ; x12 2 C

d1

�
fx12g [ Y 1

�
= fx11; x12g ; x21 2

C
d2

�
fx21g [ Y 1

�
= fx21g ; y21 2 Cd2

�
fy21g [ Y 1

�
= fy21g ; x32 =2 Cd3

�
fx32g [ Y 1

�
=
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fy32g ; y32 2 Cd3

�
fy32g [ Y 1

�
= fy32g :

Obtain
CH

�
I(H;Y 1)

�
= fx11; x21; y32g in fact:

Ch1(I(h1; Y
1)) = Ch1(fx11; x21; y21g) = fx11; x21g ; Ch2(I(h2; Y 1)) = Ch2(fx12; y32g) =

fy32g
De�ne

Y 2 = CD(CH
�
I(H;Y 1)

�
) = fx11; x21; y32g in fact:

Cd1(CH
�
I(H;Y 1)

�
) = Cd1(fx11g) = fx11g ; Cd2(CH

�
I(H;Y 1)

�
) = Cd2(fy21g) =

fx21g ; Cd3(CH
�
I(H;Y 1)

�
) = Cd3(fx32g) = fx32g

Since Y 2 = Y 1 the algorithm stops.
Output
fx11; x21; y32g

III) Calculation of the hospitals� optimal allocation under the truncated
pro�le P x21x32 = P x32x21 using the HOA.

P x21x32d1
: fx11; x12g �h1 fx11g �h1 fx12g �h1 ?

P x21x32d2
: fy21g �d2 fx21g �d2 ?

P x21x32d3
: fy32g �d3 fx32g �d3 ?

P x21x32h1
: fx11; y21g �h1 fx11g �h1 fy21g �h1 ?

P x21x32h2
: fy32g �h2 ?

Input
X = fx11; x12; x21; y21; x32; y32g ; the pro�le of substitutable preferences P x21x32 =
P x32x21 ; the IRD allocation ?:
Start:
Y 0 = ?
i = 1
Calculate

I(H;Y 0) = X in fact:

x 2 CxD (fxg [?) for all x 2 X:
Obtain

CH
�
I(H;Y 0)

�
= fx11; y21; y32g in fact:

Ch1(I(h1; Y
0)) = Ch1(fx11; x21; y21g) = fx11; y21g ; Ch2(I(h2; Y 0)) = Ch2(fx12; x32; y32g) =

fy32g
De�ne

Y 1 = CD(CH
�
I(H;Y 0)

�
) = fx11; y21; y32g in fact:

Cd1(CH
�
I(H;Y 0)

�
) = Cd1(fx11g) = fx11g ; Cd2(CH

�
I(H;Y 0)

�
) = Cd2(fy21g) =

fy21g ; Cd3(CH
�
I(H;Y 0)

�
) = Cd3(fy32g) = fy32g

Since Y 1 6= Y 0 realize a new iteration.
i = 2
Calculate

I(H;Y 1) = fx11; x12; y21; y32g in fact:

x11 2 C
d1

�
fx11g [ Y 1

�
= fx11g ; x12 2 C

d1

�
fx12g [ Y 1

�
= fx11; x12g ; x21 =2
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C
d2

�
fx21g [ Y 1

�
= fy21g ; y21 2 Cd2

�
fy21g [ Y 1

�
= fy21g ; x32 =2 Cd3

�
fx32g [ Y 1

�
=

fy32g ; y32 2 Cd3

�
fy32g [ Y 1

�
= fy32g :

Obtain
CH

�
I(H;Y 1)

�
= fx11; y21; y32g in fact:

Ch1(I(h1; Y
1)) = Ch1(fx11; y21g) = fx11; y21g ; Ch2(I(h2; Y 1)) = Ch2(fx12; y32g) =

fy32g
De�ne

Y 2 = CD(CH
�
I(H;Y 1)

�
) = fx11; y21; y32g in fact:

Cd1(CH
�
I(H;Y 1)

�
) = Cd1(fx11g) = fx11g ; Cd2(CH

�
I(H;Y 1)

�
) = Cd2(fy21g) =

fx21g ; Cd3(CH
�
I(H;Y 1)

�
) = Cd3(fx32g) = fx32g

Since Y 2 = Y 1 the algorithm stops.
Output
fx11; y21; y32g
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