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Abstract We study strategy-proof allocation rules in economies with perfectly
divisible multiple commodities and single-peaked preferences. In this setup, it is
known that the incompatibility among strategy-proofness, Pareto efficiency and non-
dictatorship arises in contrast with the Sprumont (Econometrica 59:509–519, 1991)
one commodity model. We first investigate the existence problem of strategy-proof
and second-best efficient rules, where a strategy-proof rule is second-best efficient if
it is not Pareto-dominated by any other strategy-proof rules. We show that there exists
an egalitarian rational (consequently, non-dictatorial) strategy-proof rule satisfying
second-best efficiency. Second, we give a new characterization of the generalized
uniform rule with the second-best efficiency in two-agent case.

Keywords Strategy-proofness · Single-peaked preference · Second-best efficiency ·
Generalized uniform rule

JEL Classification D63 · D71 · D78

1 Introduction

Ever since Sprumont (1991), resource allocation problems in economies with single-
peaked preferences have been studied by many authors. As is pointed out in Sprumont
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694 H. Anno, H. Sasaki

(1991), a single-peaked preference model may have several important interpretations.
One possible interpretation is the “fixed-price economy” interpretation. In this inter-
pretation, the peak of a preference is interpreted as a “Walrasian demand” under a
fixed price. Another possible interpretation is a “task-sharing problem”. Suppose that
there is a group of agents that is involved in a production process. To complete the
task, a fixed amount of (homogeneous) work is needed. Finally, each agent receives
a piece of output according to his contribution. In this circumstance, it is natural to
assume that each agent has a single-peaked preference over the space of quantity of
work (the real line).1

In this paper, we call a mapping that associates each list of preferences with an
allocation of resource a resource allocation rule, or simply a rule. If there is only one
commodity, Sprumont (1991) presents a characterization of a resource allocation rule
called the uniform rule.2 Under the uniform rule, the same amount of the commodity
is allotted to everyone except people whose peaks are small enough if excess demand
exists or large enough if excess supply exists. He proves that the uniform rule is the only
rule that satisfies three axioms: strategy-proofness, Pareto efficiency, and anonymity.
Strategy-proofness means that announcing their true preferences is a dominant strategy
for each agent in the game of stating their preferences. Pareto efficiency means that
given a preference profile, the rule should select a Pareto efficient allocation for the
reported preference profile. Anonymity says that the rule is independent of the “names”
of the agents.

Sprumont’s theorem essentially depends on the assumption that there is only one
commodity. If the number of commodities is greater than one, we may naturally extend
the uniform rule. The extended rule is referred to as the generalized uniform rule. The
generalized uniform rule is defined by applying the single commodity uniform rule
commodity by commodity.

It is easy to show that the generalized uniform rule is strategy-proof.3 However, as
shown in Example 1 below, the rule violates Pareto efficiency.

Example 1 There are two agents and two commodities. Let �1 and �2 be the amounts
of commodities 1 and 2. Figure 1 is an Edgeworth Box. In Fig. 1, p(R1) and p(R2)

designate the peaks of Mr. 1 and Mr. 2’s preferences, respectively. The middle point
(�1

2 , �2
2 ) is the allocation where equal amounts of commodities are allotted to each

agent. Since for each commodity j = 1, 2, both agents have peaks greater than
� j
2 ,

the generalized uniform rule assigns equal amounts of commodities to both. This
allocation is given by (�1

2 , �2
2 ). However, if their indifference curves through (�1

2 , �2
2 )

can be drawn as in Fig. 1, there is room for Pareto improvement. (For example, x is
better than (�1

2 , �2
2 ) for both agents.)

The literature on strategy-proofness in economic environments with classical pref-
erences has uncovered the incompatibility among strategy-proofness, Pareto efficiency
and some weak fairness notions. For example, in pure exchange economies with two

1 These examples are taken from Sprumont (1991).
2 The rule was originally introduced by Benassy (1982).
3 It also satisfies anonymity.
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Second-best efficiency of allocation rules 695

Fig. 1 The generalized uniform rule violates Pareto efficiency

agents and two commodities, no rule is strategy-proof, Pareto efficient, and individu-
ally rational (Hurwicz 1972).4 In two agents and m commodities economies, no rule
is strategy-proof, Pareto efficient, and non-dictatorial (Zhou 1991).5 In n agents and
m commodities economies, no rule is strategy-proof, Pareto efficient, and individu-
ally rational (Serizawa 2002). Finally, in n agents and m commodities economies,
strategy-proof and Pareto efficient rules cannot guarantee a minimum consumption:
for arbitrarily small ε > 0, there exists a preference profile such that under the rule
and the preference profile, there is an agent whose consumption has a Euclidean norm
smaller than ε (Serizawa and Weymark 2003).6

The same kind of incompatibility exists in economies with multiple commodities
and single-peaked preferences. Amorós (2002) points out that in economies with two
agents and m commodities, where each agents’ preference is single-peaked, no rule
is strategy-proof, Pareto efficient, and non-dictatorial.

Facing with the impossibility, the best one can do is to drop or relax an axiom.
In fact, Amorós (2002) resolved this difficulty along this line. That is, he relaxed
Pareto efficiency to the axiom of same-sidedness. This axiom requires that for each
commodity, the amount of the commodity received by everyone be located on the same
side of the agent’s own peak.7 His main theorem says that if the number of agents is two

4 Individual rationality requires that the selected allocation be better than or indifferent to initial endowment
for each agent. In this paper, we assume that some amount of commodities is initially owned by society,
not by each individual.
5 A rule is dictatorial if there exist an agent who always receives the most desirable allotment according to
his preference. If a rule has no dictator, then we say that the rule is non-dictatorial.
6 It is known that this kind of incompatibility does not hold when the domain of a rule is the set of Leontief
preferences. See Nicolò (2004) and Li and Xue (2012).
7 That is, if the quantity of a commodity received by an agent is greater than or equal to his own peak
amount, then the quantities of the commodity received by other agents should be greater than or equal to
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and the number of commodities is greater than or equal to two, the generalized uniform
rule is the unique rule satisfying no-envy, strategy-proofness, and same-sidedness.8

Since same-sidedness is a straightforward extension of Sprumont’s efficiency concept,
Amorós’ theorems may be understood as a multi-commodity version of Sprumont’s
characterization.9

In the present paper, however, we study the incompatibility from a much differ-
ent point of view. To state our approach, let us discuss how strategy-proofness is
treated in the present paper. We regard strategy-proofness as an indispensable axiom
for a rule throughout this paper. For designing a well-worked rule, one of the most
problematic point caused by a strategic behavior of agents is that it may destroy
the normative requirements like efficiency and fairness. To implement such norma-
tive requirements without being interfered by a strategic behavior, strategy-proofness
should be imposed on a rule. The importance of strategy-proofness is emphasized
by us as well as many authors including Amorós (2002), Morimoto et al. (2012),
and Adachi (2010). Although both we and these authors recognize the importance of
the strategy-proofness, our approach is unique in that we introduce new second-best
efficiency concepts that are much different from same-sidedness.10 More precisely,
letting f and g be any rules, f is said to Pareto-dominate g if f i (R) is at least as
good as gi (R) for each i and each preference profile R. We consider the set �SP of
all strategy-proof rules and propose two concepts of second-best efficiency. The first
one is weak second-best efficiency among strategy-proof rules (WSESP). A strategy-
proof rule f0 is WSESP if for any strategy-proof rule f1 that Pareto-dominates f0, f0
Pareto-dominates f1. The second concept is called strong second-best efficiency among
strategy-proof rules (SSESP). A strategy-proof rule f0 is SSESP if for any strategy-
proof rule f1 that Pareto-dominates f0, f0 = f1. We will present a characterization of
the generalized uniform rule with WSESP in a two agents and m commodities setup
and compare the result with the previous authors’ characterizations in Sect. 3.

In the proof of the main results (Theorems 1, 2, 3, 4), the option set of each
agent plays an important role.11 For the i-th agent, given a preference profile
R−i = (R1, . . . , Ri−1, Ri+1, . . . , Rn) of the other agents, the option set of the i-th
agent under a rule f is the set of bundles that may be assigned to him by f if the

Footnote 7 continued
their own peak amounts, and vice versa. If the number of commodity is one, same-sidedness is equivalent
to Pareto efficiency. However, if the number of commodity is greater than one, same-sidedness is not a
sufficient condition for Pareto efficiency. In this sense, it is strictly weaker than Pareto efficiency. Amorós
(2002) called the axiom Condition E (CE).
8 Theorem 2 in Amorós (2002). In his Theorem 3, he replaces no-envy with weak anonymity. Recently,
Morimoto et al. (2012) and Adachi (2010) extended Amorós’ result to the case of arbitrary number of
agents.
9 As noted earlier, same-sidedness is equivalent to Pareto efficiency if the number of commodity is one.
In his proof, Sprumont (1991) needs only geometric property from same-sidedness. Hence, in multiple-
commodity economies, only same-sidedness is required for extending Sprumont’s characterization.
10 Precisely speaking, Morimoto et al. (2012) do not adopt same-sidedness directly. But the combination
of some axioms they adopt implies same-sidedness. See Lemma 1 in Morimoto et al. (2012).
11 The notion of the option set is effectively used in many papers including Barberà (1983) and Barberà
and Peleg (1990). See also Bordes et al. (2011).
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Second-best efficiency of allocation rules 697

other agents announce the preference profile R−i . In the set �SP of all strategy-proof
rules, we prove that for any rules f and g ∈ �SP, f Pareto-dominates g if and only
if the option set of g is included in that of f for each agents (Lemma 4). Thus, on
the domain �SP, the relation of Pareto-domination is equivalent to the relation of set
theoretic inclusion between option sets. This observation is important in the proofs.
For example, in Theorem 1, we prove the existence of a Pareto-undominated rule
(a WSESP rule). In the proof of the theorem, it is enough to show that there exists a
maximal option set with respect to the inclusion relation in the collection of option sets.

This paper consists of four sections. In Sect. 2, we present the model and describe our
axioms. Moreover, we examine the existence of strategy-proof, efficient, and equitable
allocation rules in an n agents and m commodities setup. In Sect. 3, a new character-
ization of the generalized uniform rule is given in a two agents and m commodities
setup. Section 4 concludes. All proofs are relegated to “Appendix”.

2 Second-best efficiency of resource allocation rules

2.1 Single-peaked preferences with multiple commodities

Let N = {1, . . . , n} be the set of agents. Let M = {1, . . . , m} be the set of commodi-
ties. All commodities are perfectly divisible. The bundle � = (�1, . . . , �m) ∈ R

m++
denotes a social endowment of the commodities.12 Let B denote the set of feasible allo-
cations. Since we do not allow free disposal, B = {

x = (x1, . . . , xn) ∈ (Rm+)n | ∑n
i=1

xi = �
}
. The preferences of each agent are given by a complete, transitive, continu-

ous, and strictly convex binary relation on
∏m

j=1[0,� j ].13

Definition 1 A preference R is a (multidimensional) single-peaked preference if there
exists p(R) ∈ ∏m

j=1[0,� j ] such that for each x, x ′ ∈ ∏m
j=1[0,� j ] with x �= x ′,

[
∀ j ∈ M, x ′

j ≤ x j ≤ p j (R) or p j (R) ≤ x j ≤ x ′
j

]
⇒ x P(R) x ′.

Let R be the class of single-peaked preferences.14 We call an element of RN a pref-
erence profile, or simply a profile. For each profile R = (R1, . . . , Rn) ∈ RN , and

12 The symbols N and R denote the set of natural and real numbers, respectively. Let R+ be the set of
non-negative numbers and let R++ be the set of positive real numbers.
13 For each preference R, P(R) and I (R) denote the asymmetric part of R and the symmetric part of R,
respectively.
14 In Introduction, we give two interpretations of single-peaked preferences. These interpretations are due
to Sprumont (1991), and they are meaningful even in a multi-dimensional setup as well as a one-dimensional
setup. In addition to these interpretations, multi-dimensional single-peaked preferences have an inherent
and important interpretation. It is about a design of a risk-sharing rule. To see this, let us consider an example
of the task-sharing under uncertainty.

Suppose that a group of agents participates in a production process, say cultivating rice, and suppose that
there are finitely many states of nature (for example, hot summer and cold summer). Since crops of rice
field depend on weather, the quantity of harvested rice may vary depending on the states of nature. Each
agent receives a portion of the product according to their own contribution and a realized state.

Since this is an extension of the task-sharing example in Introduction to a case with quantity uncer-
tainty, it is natural to assume that his inter-state utility representation ui (xi

1, xi
2, . . . , xi

m ) is m-dimensionally
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each i ∈ N , the subprofile obtained by removing i’s preference is denoted by R−i ;
that is, R−i = (R1, . . . , Ri−1, Ri+1, . . . , Rn). It is convenient to write the profile
(R1, . . . , Ri−1, R̂i , Ri+1, . . . , Rn) as (R̂i ; R−i ). A rule is a mapping from RN to B.
Let � denote the set of all rules.

2.2 Basic axioms

In this subsection, we introduce our axioms. Let f be the generic notation for rules.
The first axiom is a quite standard requirement of efficiency. It says that no one can
be made better off at the selected allocation without someone else being made worse
off.

Pareto efficiency (PE): for each R = (R1, . . . , Rn) ∈ RN , there is no x =
(x1, . . . , xn) ∈ B such that i) xi Ri f i (R) for each i ∈ N ; and ii) xi P(Ri ) f i (R)

for some i ∈ N .

Next, we introduce three fairness axioms. In our model, the social endowment is
interpreted as the resource jointly owned by all agents in the society. Hence, it is
natural to consider that the welfare level at the equal division should be guaranteed in
selected allocations. The following axiom embodies this idea.

Egalitarian rationality (ER)15: for each R = (R1, . . . , Rn) ∈ RN and each i ∈
N , f i (R) Ri �

n .

The second fairness axiom requires that no agent prefer another agent’s allotment
to his own in selected allocations.

No-envy (NE): For each R ∈ RN , and each i, j ∈ N , f i (R) Ri f j (R).

The third fairness axiom says that if two agents have the same preference, then their
welfare level should be the same.

Symmetry (SY): For each R ∈ RN , and each i, j ∈ N , if Ri = R j , then f i (R) I (Ri )

f j (R).

Note that NE implies SY. There is no logical relationship between ER and NE in
general. For economies with n = 2, it is known that ER is a stronger requirement than
NE. See, for example, Thomson (2011).

Now, we introduce an incentive compatibility axiom called strategy-proofness.
Since Hurwicz (1972), it has been recognized by economists that the price mechanism

Footnote 14 continued
single-peaked, where xi

s is the quantity of rice allocated to the i-th agent when the s-th state of nature is
revealed. See Ju (2005) for the case of monotonic preferences.
15 This axiom is sometimes referred to as the equal division lower bound.
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can be manipulated by a strategic behavior of an agent. More seriously, in some pref-
erence profiles, a strategic behavior of an agent can destroy the efficiency of the price
mechanism. That is, the selected allocation at the false preference profile can be ineffi-
cient in terms of the true preference profile. As mentioned in Introduction, throughout
this paper, we keep assuming strategy-proofness because we need to implement nor-
mative axioms such as fairness without being interfered by a strategic behavior of an
agent. The axiom requires that no agent can ever be better off by misreporting his
preference.

Strategy-proofness (SP): for each R = (R1, . . . , Rn) ∈ RN , each i ∈ N , and each
R̂i ∈ R, f i (R) Ri f i (R̂i ; R−i ).

Let �SP denote the set of all strategy-proof rules.

2.3 Second-best efficiency

As we saw in Introduction, many authors have shown the incompatibility among SP,
PE and some fairness notions in pure exchange economies (Hurwicz 1972; Zhou
1991; Serizawa 2002; Serizawa and Weymark 2003). This kind of difficulty arises in
our single-peaked preference model with multiple commodities, too. Amorós (2002)
shows that every strategy-proof and Pareto-efficient rule is dictatorial when n = 2
in the single-peaked preference models with multiple commodities.16 Note that ND
is a much weaker axiom than the three fairness notions appeared in the previous
subsection. This result parallels the negative result shown by Zhou (1991) in two
agents pure exchange economies. Although we do not pursue this line of investigation
in this paper, Amorós’ impossibility theorem suggests that the same negative result
could be obtained even if the number of agents is greater than two.

Facing the incompatibility among SP, PE and some fairness notions, to design an
plausible rule in our setup, we must give up at least one of them. As we have noticed in
Introduction, we keep assuming SP because it is the condition that guarantees a rule to
behave as intended. In this paper, we relax PE rather than fairness notion. Otherwise
we cannot help accepting dictatorship as the Amorós’ theorem suggested. In the rest
of this subsection, we address the two following natural questions:

Question 1. How can we relax the concept of PE while preserving SP? That is, what
kind of second-best efficiency concepts do we have?

Question 2. Is there a rule satisfying SP and ND in addition to second-best efficiency?

As an answer to Question 1, we introduce two second-best efficiency concepts.
The axioms are based on Pareto-domination in the set of rules. To formalize them,

16 An agent i ∈ N is a dictator of a rule f if for each R = (R1, . . . , Rn) ∈ RN , f i (R) = p(Ri ).
Obviously, a rule has at most one dictator. A rule f is dictatorial if f has a dictator. The following is the
weakest fairness condition in this paper.
Non-dictatorship (ND) : f does not have a dictator.
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we define the Pareto-dominance relation. “A rule f Pareto-dominates a rule g” means
that for each preference profile and each agent, the consumption bundle selected by
f is preferred or is indifferent to the one selected by g.

Definition 217 For each f, g ∈ �,

f dom g ⇔ ∀R = (R1, . . . , Rn) ∈ RN ,∀i ∈ N , f i (R) Ri gi (R).

Using the dom relation, we obtain the following equivalent expression of PE. This
expression clarifies that PE requires a rule to be a maximal element of � preordered
by dom.

Pareto efficiency (PE) : for each g ∈ �, g dom f ⇒ f dom g.

Now we move on to our second-best efficiency concepts. The first one (i) requires
that a rule be a maximal element of �SP preordered by dom. This is a natural require-
ment of efficiency as long as we keep assuming SP because if we have two SP rules f
and g satisfying f dom g and not g dom f , then the agents in the society unanimously
choose f . The second one (ii) is more demanding. It requires that a rule be a maximal
element of �SP preordered by dom and that no other rule be welfare-equivalent to it.

(i) Weak second-best efficiency among all strategy-proof rules (WSESP): f ∈ �SP and
for each g ∈ �SP, g dom f ⇒ f dom g.

(ii) Strong second-best efficiency among all strategy-proof rules (SSESP): f ∈ �SP
and for each g ∈ �SP, g dom f ⇒ f = g.18

The first one is logically implied by PE if a rule also satisfies SP because the axiom
is a natural restriction to �SP. Clearly, SSESP also implies WSESP. As shown in the
next section, the generalized uniform rule not only satisfies WSESP, but also satisfies
SSESP. This fact is crucial to our characterization.

Next, we answer Question 2. The following theorem states that for any rule f which
satisfies SP, we have a WSESP rule that dominates f . This theorem will be used to
prove that our characterization is tight in Sect. 3.3. Note that in the following theorems,
the number of agents is arbitrary.

Theorem 1 For any f ∈ �SP, there exists a rule f0 ∈ �SP that is weakly second-best
efficient among all strategy-proof rules (WSESP) such that f0 dom f .

As a consequence of relaxing PE, we obtain the following positive result. Since
ND is implied by ER, the answer to Question 2 is yes as far as WSESP is concerned.19

17 Note that dom is reflexive and transitive. Hence, it is a preorder on �. But it is not an order on � in
general. That is, f dom g and g dom f do not necessarily imply f = g. If f dom g and g dom f , then we
say f and g are equivalent with respect to the welfare. Note also that dom is not complete.
18 Sasaki (2003) first introduced SSESP. He called this condition �SP-efficiency.
19 Remember that no rule satisfies SP, PE and ND when n = 2.
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Second-best efficiency of allocation rules 701

Theorem 2 There exists a strategy-proof rule satisfying egalitarian rationality (ER)
and weak second-best efficiency among all strategy-proof rules (WSESP).

3 A new characterization of the generalized uniform rule

3.1 The generalized uniform rule

One of the purposes of this paper is to characterize the following rule, which is known
as the generalized uniform rule.

Definition 3 For each R = (R1, . . . , Rn) ∈ RN , each j ∈ M , each i ∈ N ,

Ui
j (R) =

{
min{p j (Ri ), λ j (R)} if

∑n
i=1 p j (Ri ) ≥ � j ,

max
{

p j (Ri ), μ j (R)
}

if
∑n

i=1 p j (Ri ) ≤ � j ,

where λ j (R) solves the equation � j = ∑n
i=1 min{p j (Ri ), λ j (R)} and μ j (R) solves

the equation � j = ∑n
i=1 max{p j (Ri ), μ j (R)}.

3.2 A characterization of the generalized uniform rule

The following theorem describes an efficiency aspect of the generalized uniform rule.

Theorem 3 Let n = 2. If a rule satisfies strategy-proofness (SP) and same-sidedness,
then it satisfies strong second-best efficiency among all strategy-proof rules (SSESP). In
particular, the generalized uniform rule satisfies strong second-best efficiency among
all strategy-proof rules (SSESP).20

In the previous subsection, we point out that for any n ≥ 2, there exists a rule
satisfying WSESP and ER. Since the generalized uniform rule satisfies ER, by Theorem
3, it is one of the rules satisfying WSESP and ER when n = 2.

Now, we ask whether there exists a rule satisfying WSESP and ER other than the
generalized uniform rule. The answer is yes. An example of such a rule is provided in
Example 4. However, Corollary 1 shows that if we impose the following condition in
addition to WSESP and ER, then the generalized uniform rule is the unique rule that
satisfies these three axioms. Moreover, we can relax ER for the uniqueness result.

Weak peak-onliness (WP)21: for each R = (R1, . . . , Rn) ∈ RN , each i ∈ N , each
R̃i ∈ R,

20 In the division problem of indivisible goods and money, Ohseto (2006) specifies the strategy-proof and
no-envy rules that are not dominated by any other strategy-proof and no-envy rules. In the division problem
of indivisible goods, Kesten and Yazıcı (2012) finds the strategy-proof and no-envy rule that dominates any
other strategy-proof and no-envy rules. Theorem 3 says that, in our setting, the generalized uniform rule is
not dominated by any other (no-envy or not) strategy-proof rules when n = 2. Klaus (2008) proves that the
coordinate-wise core rule satisfies SSESP in the multiple-type housing markets.
21 This axiom is sometimes referred to as own peak only.
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p(Ri ) = p(R̃i ) ⇒ f i (R) = f i (R̃i ; R−i ).

Theorem 4 Let n = 2. The generalized uniform rule is the only rule that satisfies
weak second-best efficiency among all strategy-proof rules (WSESP), symmetry (SY),
and weak peak-onliness (WP).

Corollary 1 Let n = 2. The generalized uniform rule is the only rule that satis-
fies weak second-best efficiency among all strategy-proof rules (WSESP), egalitarian
rationality (ER), and weak peak-onliness (WP).

Now, let us compare Theorem 4 with the Amorós’ characterizations of the gener-
alized uniform rule. By Theorem 3 and Lemma 3 in Amorós (2002), SP and same-
sidedness imply WSESP and WP. Since his fairness notions (weak anonymity and
no-envy) imply symmetry, the Amorós’ characterizations are also corollaries of The-
orem 4.22

3.3 Independence of axioms in Theorem 4

In this subsection, we show that Theorem 4 is tight. That is, dropping any one of the
three axioms leads to other rules.

Example 2 An example of a rule that satisfies both ER and WP, but not WSESP is
the equal division rule, E, defined as follows: for each R ∈ RN , E(R) = (�

2 , �
2 ).

Obviously E satisfies ER and WP but E not WSESP because U dom E but E does
not dominate U .

Example 3 Examples of rules that satisfy both WP and WSESP, but not ER are the
priority rules. Let D(i) be the priority rule in which agent i has priority defined as
follows: for each R = (R1, R2) ∈ RN , D(i)i (R) = p(Ri ). Since D(i) satisfies SP
and PE, it satisfies WSESP. It is also clear that D(i) satisfies WP. However, clearly,
D(i) does not satisfy ER.

Example 4 A rule that satisfies both ER and WSESP, but not WP is f0 below. Let f
be the rule defined as follows. For each R = (R1, R2) ∈ RN ,

f (R) =
{

(�, 0) if � R1 �
2 and 0 R2 �

2 ,

(�
2 , �

2 ) otherwise.

Obviously f satisfies SP and ER.
First, we show that U does not dominate f . By Lemma 6 of Appendix, there exist

R̃1, R̃2 ∈ R such that p(R̃1) = p(R̃2) = (�1, . . . , �m−1, 0) and � P(R̃1)�
2 and

0 P(R̃2)�
2 . Then, f (R̃1, R̃2) = (�, 0). Since U (R̃1, R̃2) = (�

2 , �
2 ), U does not

dominate f .

22 Morimoto et al. (2012) and Adachi (2010) offer characterizations of the generalized uniform rule for
economies with arbitrary number of agents. If we limit ourselves for the case with n = 2, their results are
also implied by Theorem 4.
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By Theorem 1, there is f0 ∈ �SP such that f0 is WSESP and f0 dom f . Since f
satisfies ER and dom is transitive, f0 satisfies ER. Since f0 dom f, f 1

0 (R̃1, R̃2)R̃1�

P(R̃1)�
2 and f 2

0 (R̃1, R̃2)R̃2 0 P(R̃2)�
2 . Since U (R̃1, R̃2) = (�

2 , �
2 ), f0 �= U . This

means that f0 does not satisfy WP because if it does, then by Theorem 4, it is the
uniform rule ( f0 = U ), a contradiction.

By Examples 2, 3 and 4, we have shown that the three axioms in Theorem 4 are
independent.

4 Concluding remarks

In many models with multiple commodities including pure exchange economies, it is
known that no allocation rule satisfies SP, PE, and some fairness notions. This negative
result is valid for our setup with single-peaked preferences and multiple commodities,
especially in the two-agent case. In contrast to this fact, in this paper, we proposed
second-best efficiency concepts and showed that WSESP is compatible with SP and
ER in n agents m commodities economies (Theorem 2).

In addition, we showed that in two agents m commodities economies, the general-
ized uniform rule is the only rule that satisfies ER, WP and WSESP (Corollary 1). As
a conclusion, we present some open questions concerning second-best efficiency.

Whether the generalized uniform rule in economies with n agents and m commodi-
ties satisfies WSESP is still open.

In pure exchange economies with non-satiated preferences, we may raise a similar
question. Barberà and Jackson (1995) investigate the exchange economies in which
the prices are rigid. To study whether their strategy-proof allocation rules are second-
best efficient seems to be a very important issue. In fact, Sasaki (2006) shows that
fixed-price trading satisfies SSESP in a two agents, two commodities pure exchange
economy.23 Extending Sasaki’s result to the n agents m commodities setting would be
interesting. In addition, Barberà and Jackson (1995) investigate a class of rules called
fixed-proportion trading and characterize the rules with SP and individual rationality
in a model with 2 agents and m commodities. However, the class of fixed-proportion
trading rules includes some inefficient rules. (For example, the trivial rule, which
always assigns the initial endowment, belongs to the class.) With the second-best
efficiency concepts proposed in this paper, we may characterize a subclass of fixed-
proportion trading rules.

More generally, as discussed in Introduction, it is known that there are several
impossibility theorems suggesting the existence of a trade-off between SP and PE in
various kinds of resource allocation problems. If the requirement of PE is weakened
as done in the present paper, the same kind of positive results may be obtained in
different models.
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Appendix: Proofs

A.1 Proofs of Theorems 1 and 2

To prove Theorems 1 and 2, we need some lemmas concerning metric spaces. Let
(X, d) be a metric space. Let d̄ : X × (2X\{∅}) → R be the function defined by
d̄(x, A) = inf{d(x, a) | a ∈ A} for each x ∈ X and each A ∈ 2X\{∅}.24 Let K(X) be
the set of all non-empty compact subsets of (X, d).25 Finally, let dH : K(X)×K(X) →
R be the function defined by

dH (A, B) = max{max
a∈A

d̄(a, B), max
b∈B

d̄(b, A)}.

It is well-known that (K(X), dH ) is also a metric space. The metric dH is referred to
as Hausdorff metric.

Remark 1 Let A, B ∈ K(X). If A ⊆ B, d̄(a, B) = 0 for each a ∈ A. Hence,
dH (A, B) = maxb∈B d̄(b, A) for each A, B ∈ K(X) with A ⊆ B.

Lemma 1 Let S ⊆ K(X) be totally ordered by ⊆.26 Let C = cld(∪S∈S S).27 Then,

∀S1, S2 ∈ S, [{∃x0 ∈ C s.t. d̄(x0, S1) > d̄(x0, S2)} ⇒ S1 ⊆ S2].
Proof Suppose to the contrary, that S1 �⊆ S2. Since S is totally ordered by ⊆, S2 � S1.
Then,

d̄(x0, S1) = min{d(x0, y) | y ∈ S1}
≤ min{d(x0, y) | y ∈ S2} (∵ S2 � S1)

= d̄(x0, S2).

This is a contradiction. ��
Lemma 2 Let (X, d) be a compact metric space. Let S ⊆ K(X) be non-empty and
totally ordered by ⊆. Let C = cld(∪S∈S S) ∈ K(X). Then, there is a sequence of
compact sets in S that converges to C with respect to dH .

24 Note that d̄(·, A) is a continuous function from X to R when we fix A ∈ 2X\{∅} arbitrarily.
25 Note that d̄(x, A) = min{d(x, a) | a ∈ A} when we restrict the domain of d̄ within X × K(X).
26 In general, (Z,≥) is an ordered set if ≥ is a reflexive, transitive and anti-symmetric binary relation on
Z, where ≥ is reflexive if for each x ∈ Z, x ≥ x , and ≥ is anti-symmetric if for each x, y ∈ Z, if x ≥ y
and y ≥ x , then x = y. An ordered set (Z,≥) is total if for each x, y ∈ Z, x ≥ y or y ≥ x .
27 Note that cld (∪S∈S S) denotes the closure of ∪S∈S S in (X, d).
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Proof If C ∈ S, then the conclusion is trivial. We consider the case C �∈ S.

Step 1 For each S′ ∈ S, there exists S′′ ∈ S such that dH (S′′, C) <
dH (S′,C)

2 .

Let S′ ∈ S. Since dH is a metric and S′ �= C, dH (S′, C) > 0. Let η := dH (S′, C).
Let H = {x ∈ C | d̄(x, S′) ≥ η

2 }. Note that H is non-empty because d̄(x∗, S′) = η

for some x∗ ∈ C . Since H is the inverse image of [ η
2 ,+∞) under the continuous

function d̄(·, S′), it is closed. Hence, because H ⊆ C ∈ K(X), H is compact.
By compactness of H , for an open cover {B(x,

η
4 )} | x ∈ H} of H , we may

find a finite points set of x1, . . . , xh ∈ H such that H ⊆ ∪h
i=1 B(xi ,

η
4 ).28 Since

x1, . . . , xh ∈ H ⊆ cld(∪S∈S S), then

∀i ∈ {1, . . . , h}, ∃Si ∈ S s.t. Si ∩ B
(

xi ,
η

4

)
�= ∅.

Since {S1, . . . , Sh} are totally ordered by ⊆, there is the greatest element in
{S1, . . . , Sh}. We call it S′′.

In the following, we show dH (S′′, C) <
η
2 . To this end, because of Remark 1, it is

sufficient to show that for each x ∈ C, d̄(x, S′′) <
η
2 .

Let x ∈ C . First, suppose that x ∈ H . Then,

∃ix ∈ {1, . . . , h} s.t. x ∈ B
(

xix ,
η

4

)
.

Since S′′ ∩ B(xix ,
η
4 ) �= ∅, there is y ∈ S′′ ∩ B(xix ,

η
4 ). By the triangle inequality,

d(x, y) ≤ d(x, xix ) + d(xix , y)

<
η
4 + η

4

= η
2 .

By the definition of d̄ , we have d̄(x, S′′) <
η
2 .

Note that we have shown that d̄(x∗, S′) = η >
η
2 > d̄(x∗, S′′). Hence, by

Lemma 1, S′ ⊆ S′′.
Next suppose that x �∈ H . Then,

η
2 > d̄(x, S′) (∵ x �∈ H)

= min{d(x, y) | y ∈ S′}
≥ min{d(x, y) | y ∈ S′′} (∵ S′ ⊆ S′′)
= d̄(x, S′′).

This completes the proof of Step 1.

Step 2 Applying the Axiom of Choice.

28 Note that B(x, ε) denotes the open ball centered at x with a radius ε.
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By Step 1 and the axiom of choice, there is a function � : S → S such that

∀S ∈ S, dH (�(S), C) <
dH (S, C)

2
.

Let S ∈ S. Let S1 ≡ S. For each k ≥ 2, let Sk ≡ �(Sk−1). Since for each k ∈
N, dH (Sk, C) <

dH (S,C)

2k−1 , {Sk}k∈N satisfies dH (Sk, C) → 0 as k → +∞. ��
Remark 2 The sequence obtained in Lemma 2 satisfies

S1 ⊆ S2 ⊆ S3 ⊆ · · · .

Definition 4 Let f ∈ � and i ∈ N . For each R−i ∈ RN\{i},

B
f i
R−i ≡

⎧
⎨

⎩
x ∈

m∏

j=1

[0,� j ] | ∃Ri ∈ R s.t. f i (Ri ; R−i ) = x

⎫
⎬

⎭
.

We call B
f i
R−i the option set of agent i under f and R−i .

Let τ(R, Y ) = {x ∈ Y | ∀y ∈ Y, x Ry} for each Y ⊆ ∏m
j=1[0,� j ], each R ∈ R.

That is, τ(R, Y ) denotes the best consumptions on Y ⊆ ∏m
j=1[0,� j ] with respect to

R ∈ R.29

Lemma 3 Let f ∈ �.

f ∈ �SP ⇔ ∀R ∈ RN ,∀i ∈ N , f i (R) ∈ τ(Ri , B
f i
R−i ).

Proof Obvious. ��
Lemma 4 Let f, g ∈ �SP.

f dom g ⇔ ∀i ∈ N ,∀R−i ∈ RN\{i}, B
gi

R−i ⊆ B
f i
R−i .

Proof (⇒) Let i ∈ N , R−i ∈ RN\{i}. Let x ∈ B
gi

R−i . Let Ri ∈ R be
such that τ(Ri ,

∏m
j=1[0,� j ]) = x . By Lemma 3, gi (Ri ; R−i ) = x . Since

f dom g, f i (Ri ; R−i ) Ri gi (Ri ; R−i ). Hence, f i (Ri ; R−i ) = x . This implies

x ∈ B
f i
R−i .

(⇐) Let i ∈ N , R ∈ RN . By Lemma 3, f i (R) ∈ τ(Ri , B
f i
R−i ) and gi (R) ∈

τ(Ri , B
gi

R−i ). Since B
gi

R−i ⊆ B
f i
R−i , f i (R) Ri gi (R). ��

29 If f ∈ �SP, then B
f i
R−i is closed set in

∏m
j=1[0,� j ] for each i ∈ N , R−i ∈ RN\{i}. To see this,

fix i ∈ N and R−i ∈ RN\{i}, then we have a one agent social choice function from R to
∏m

j=1[0,� j ]
induced by f . Note that B

f i
R−i is the range of the one agent social choice function. Applying Proposition

5 in Le Breton and Weymark (1999), we have the conclusion. See also Barberà and Peleg (1990).
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For each f, g ∈ �SP, f ∼ g if and only if f dom g and g dom f . Note that ∼ is an
equivalence relation on �SP. For each f ∈ �SP, [ f ] denotes the equivalence class of
f in the quotient set �SP/ ∼.

Definition 530 For each [ f ], [g] ∈ �SP/ ∼,

[ f ] Dom [g] ⇔ f dom g.

Definition 6 Let (Z,≥) be an ordered set. We say that (Z,≥) is inductive if every
non-empty totally ordered subset of Z has an upper bound.

The following lemma shows an important property of an inductive ordered set.

Zorn’s Lemma Let (Z,≥) be an ordered set which is inductive and let x0 be an
element of Z. Then

∃a ∈ Z s.t. a ≥ x0 and ∀x ∈ Z,¬(x > a).

Lemma 5 The ordered set
(
�SP/ ∼, Dom

)
is inductive.

Proof Let S ⊆ �SP/ ∼. Suppose that
(
S, Dom |S×S

)
is totally ordered. We con-

struct a rule F : RN → B and show that [F] is an upper bound of S. For each

i ∈ N , R−i ∈ RN\{i}, CR−i := cld
(

∪[ f ]∈S B
f i
R−i

)
.

Step 1 Existence of {[ f1], [ f2], . . . , [ fk], . . .}.
In this step, we show that

∃{[ fk]}k∈N in S s.t. ∀i ∈ N ,∀R−i ∈ RN\{i}, B
f i
kR−i → CR−i

. (1)

Note that {B
f i
kR−i }k∈N is a sequence in (K(

∏m
j=1[0,� j ]), dH ). Hence, B

f i
kR−i →CR−i

means the convergence of the sequence with respect to the dH metric.
By Lemma 2, for each i ∈ N , and each R−i ∈ RN\{i},

∃{[ fik]}k∈N in S s.t. B
f i
ikR−i → CR−i

.

By Remark 2, for each R = (R1, . . . , Rn) ∈ RN ,

B f 1
11R−1 ⊆ B f 1

12R−1 ⊆ B f 1
13R−1 ⊆ · · · ,

B f 2
21R−2 ⊆ B f 2

22R−2 ⊆ B f 2
23R−2 ⊆ · · · ,

...

B f n
n1R−n ⊆ B f n

n2R−n ⊆ B f n
n3R−n ⊆ · · · .

30 Note that Dom is an order on �SP/ ∼.
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For each k ∈ N, since {[ f1k], [ f2k], . . . , [ fnk]} is totally ordered by Dom, there is a
greatest element among [ f1k], [ f2k], . . . , [ fnk] with respect to Dom. Let [ fk] be the
greatest element. We show that {[ fk]}k∈N satisfies (1).

Let i ∈ N , and R−i ∈ RN\{i}, k ∈ N. Because fk dom fik , B
f i
ikR−i ⊆ B

f i
kR−i ,

we obtain dH (CR−i
, B

f i
kR−i ) ≤ dH (CR−i

, B
f i
ikR−i ). Since dH (CR−i

, B
f i
ikR−i ) → 0

as k → +∞, then dH (CR−i
, B

f i
kR−i ) → 0 as k → +∞.

Step 2 Defining a function F

Let {[ fk]}k∈N be a sequence obtained in Step 1. For each R ∈ RN , we obtain
a sequence { fk(R)}k∈N in B. Since B is compact, there exists a convergent sub-
sequence { fR(k)(R)}k∈N.31 Now, we define F : RN → B as follows : for each
R ∈ RN , F(R) = limk→+∞ fR(k)(R). Obviously, F ∈ �.

Step 3 For each i ∈ N ,∀R−i ∈ RN\{i}, B
Fi

R−i = CR−i
.

(i) First, we show B
Fi

R−i ⊆ CR−i
. Let xi ∈ B

Fi
R−i . Then,

∃R̂i ∈ R s.t. Fi (R̂i ; R−i ) = xi .

Let R̂ = (R̂i ; R−i ). By the definition of F, F(R̂) = limk→+∞ fR̂(k)
(R̂). For

each k ∈ N, by SP of fR̂(k)
, f i

R̂(k)
(R̂) ∈ τ(R̂i , B

f i
R̂(k)R−i ) ⊆ B

f i
R̂(k)R−i ⊆ CR−i

.

Hence, { f i
R̂(k)

(R̂)}k∈N is a convergent sequence in CR−i
. Since CR−i

is closed in
∏m

j=1[0,� j ], xi ∈ CR−i
.

(ii) Next, we show CR−i ⊆ B
Fi

R−i . Let xi ∈ CR−i
. Let Ri

d ∈ R be the preference
represented by the utility function ud defined by ud(z) = −‖xi − z‖. Let Rd =
(Ri

d; R−i ). We show that Fi (Rd) = xi by contradiction. Suppose that xi �= Fi (Rd) =
limk→+∞ f i

Rd (k)(Rd). Then, without loss of generality, we may assume

∃ε > 0, ∃K1 ∈ N s.t. ∀
 ≥ K1, f i
Rd (
)(Rd) �∈ B(xi , ε). (2)

Since B
f i
kR−i → CR−i

, there exists K2 ∈ N such that dH (CR−i
, B

f i
K2R−i

) < ε. By

Remark 1, B
f i
K2R−i ∩ B(xi , ε) �= ∅. Furthermore, by Remark 2,

∀
 ≥ K2, B
f i

R−i ∩ B(xi , ε) �= ∅. (3)

Let L = max{K1, K2}. By (2) and (3),

f i
Rd (L)(Rd) �∈ B(xi , ε) and B

f i
Rd (L)R−i ∩ B(xi , ε) �= ∅.

31 R(·) is an operator from N to N creating a subsequence. In general, there may exist more than one
convergent subsequences. In this case, let us choose an arbitrary convergent subsequence and define it as
{ fR(k)(R)}k∈N.
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Now let y ∈ B
f i
Rd (L)R−i ∩ B(xi , ε) and let R̃i

d ∈ R be such that τ(R̃i
d ,

∏m
j=1[0,� j ]) =

{y}. Then, by Lemma 3, f i
Rd (L)(R̃i

d; R−i ) = y. This implies that fRd (L) is manipu-

lable by i at (Ri
d; R−i ) via R̃i

d , a contradiction. Hence Fi (Rd) = xi . This implies

xi ∈ B
Fi

R−i .

Step 4 The rule F is strategy-proof.

Let R ∈ RN , i ∈ N . First, we prove that

∀k ∈ N, Fi (R) Ri f i
k (R). (4)

Because for each k ∈ N, B
f i
kR−i ⊆ B

f i
k+1R−i , f i

k+1(R) Ri f i
k (R). Since Ri is contin-

uous and Fi (R) = limk→+∞ f i
R(k+1)(R), we obtain (4).

Next, we prove F ∈ �SP. To this end, suppose the contrary. That is

∃xi ∈ B
Fi

R−i s.t. xi P(Ri ) Fi (R).

Since xi ∈ B
Fi

R−i , for some R̂i ∈ R, Fi (R̂i ; R−i ) = xi . Let R̂ = (R̂i ; R−i ). By the
definition of F ,

xi = lim
k→+∞ f i

R̂(k)
(R̂). (5)

Since xi ∈ SUC(Ri , Fi (R)) and Ri is continuous, B(xi , ε) ⊆ SUC(Ri , Fi (R)) for
some ε > 0.32 By (5), for sufficiently large L ∈ N, f i

R̂(L)
(R̂) ∈ SUC(Ri , Fi (R)).

By (4), SUC(Ri , Fi (R)) ⊆ SUC(Ri , f i
R̂(L)

(R)). This implies that f i
R̂(L)

(R̂) ∈
SUC(Ri , f i

R̂(L)
(R)). This means that f i

R̂(L)
is manipulable by i at R = (Ri ; R−i )

via R̂i . This contradicts the SP of f i
R̂(L)

. Hence F ∈ �SP.

By Step 4, [F] ∈ �SP/ ∼. By Step 3 and the definition of CR−i
,

∀[ f ] ∈ S, [F] Dom [ f ].

Hence [F] is an upper bound of S. ��
Proof of Theorem 1 By Lemma 5 and Zorn’s lemma, for each f ∈ �SP, there exists

f0 ∈ �SP such that f0 dom f and [ f0] is a maximal element of
(
�SP/ ∼, Dom

)
. ��

32 Let UC(R, x) = {y ∈ ∏m
j=1[0, � j ] | y R x}, SUC(R, x) = {y ∈ ∏m

j=1[0, � j ] | y P(R) x} and

LC(R, x) = {y ∈ ∏m
j=1[0, � j ] | x R y} for each x ∈ ∏m

j=1[0, � j ], and each R ∈ R.
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Proof of Theorem 2 Let E be the rule defined by

∀R ∈ RN ,∀i ∈ N , Ei (R) = �

n
.

Obviously E satisfies SP and ER. By Theorem 1, there exists a rule E0 which satisfies
WSESP and E0 dom E . Since dom is transitive, E0 satisfies ER. ��

A.2 Proofs of Theorems 3 and 4

First, we introduce a useful lemma. A proof is found in Amorós (2002).

Lemma 6 If x∗, x ′, x ′′ ∈ ∏m
j=1[0,� j ] are such that

[
∃ j ∈ M s.t. |x∗

j − x ′′
j | < |x∗

j − x ′
j |
]

or
[
∃ j ∈ M s.t. (x∗

j − x ′′
j )(x∗

j − x ′
j ) < 0

]
,

then there exists R ∈ R such that p(R) = x∗ and x ′′ P(R)x ′.

We will find the following equivalent statement of Lemma 6 is convenient.

Lemma 7 If x∗, x ′, x ′′ ∈ ∏m
j=1[0,� j ](x ′ �= x ′′) are such that

¬[∀ j ∈ M, x∗
j ≤ x ′

j ≤ x ′′
j or x ′′

j ≤ x ′
j ≤ x∗

j ],

then there exists R ∈ R such that p(R) = x∗ and x ′′ P(R)x ′.

Before we prove Theorem 3, we establish the following lemma about the shape of
option sets. Note that Lemma 8 holds for any number of agents.

Lemma 8 Suppose that f satisfies SP and WP. Then,

∀i ∈ N ,∀R−i ∈ RN\{i},∀ j ∈ M, ∃a j , b j ∈ [0,� j ] s.t. B
f i
R−i =

m∏

j=1

[a j , b j ].

Proof Let i ∈ N and R−i ∈ RN\{i}. The proof is in two steps.

Step 1 The option set B
f i
R−i is convex.

Suppose by contradiction, that

∃v̂, ŵ ∈ B
f i
R−i , ∃λ ∈ (0, 1)s.t.λv̂ + (1 − λ)ŵ �∈ B

f i
R−i .

Obviously,

∃v,w ∈ B
f i
R−i ,∀λ ∈ (0, 1)s.t.λv + (1 − λ)w �∈ B

f i
R−i .
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Let x̃ = 1
2v + 1

2w and let R̃ ∈ R be a preference that satisfies p(R̃) = x̃ .
Case 1. f i (R̃; R−i ) = v or f i (R̃; R−i ) = w

For each d = (d1, . . . , dm) ∈ ∏m
j=1{e j ,−e j } and each y ∈ ∏m

j=1[0,� j ],
E(y, d) := {z ∈ ∏m

j=1[0,� j ] | ∃γ1, . . . , γm ∈ R+ s.t. z = y + ∑m
j=1 γ j d j },

where e j denotes the m-dimensional vector whose j th coordinate is 1 and the other
coordinates are 0. Without loss of generality, we may assume f i (R̃; R−i ) = v.
Let d = (d1, . . . , dm) and d′ = (d ′

1, . . . , d ′
m) ∈ ∏m

j=1{e j ,−e j } be such that

v ∈ E(p(R̃), d) and w ∈ E(p(R̃), d′). Suppose also that d and d′ are such that

∀ j ∈ M,
[
v ∈ E(p(R̃), (−d j , d− j )) or w ∈ E(p(R̃), (−d ′

j , d′− j )) ⇒ d j = d ′
j

]
,

(6)

where (−d j , d− j ) = (d1, . . . , d j−1,−d j , d j+1, . . . , dm) and (−d ′
j , d′− j ) is defined

in the same manner. Obviously, because p(R̃) is the midpoint of v and w, there exists
j ′ ∈ M such that d j ′ = −d ′

j ′ . Since v j ′ < x̃ j ′ < w j ′ or w j ′ < x̃ j ′ < v j ′ , by Lemma

6, there exists R̂i ∈ R such that p(R̂i ) = x̃ and w P(R̂i ) v. Hence, by Lemma 3,
f i (R̂i ; R−i ) �= v. Since f satisfies WP, this is a contradiction.
Case 2. f i (R̃; R−i ) �= v and f i (R̃; R−i ) �= w Let c = f i (R̃; R−i ). If

[∃ j ∈ M s.t. |x̃ j − v j | < |x̃ − c j | or (x̃ − v j )(x̃ − c j ) < 0]

or

[∃ j ∈ M s.t. |x̃ j − w j | < |x̃ − c j | or (x̃ − w j )(x̃ − c j ) < 0],

then by Lemma 6,

[
∃R̃v ∈ R s.t. p(R̃v) = x̃ and v P(R̃v) c

]
or

[
∃R̃w ∈ R s.t. p(R̃w) = x̃ and w P(R̃b) c

]
.

This contradicts the fact that c = f i (R̃; R−i ) and f is weakly peak only. Hence,

[∀ j ∈ M, |x̃ j − v j | ≥ |x̃ − c j | and (x̃ − v j )(x̃ − c j ) ≥ 0]

and

[∀ j ∈ M, |x̃ j − w j | ≥ |x̃ − c j | and (x̃ − w j )(x̃ − c j ) ≥ 0].

Suppose that d, d′ ∈ ∏m
j=1{e j ,−e j } satisfy v ∈ E(p(R̃), d), w ∈ E(p(R̃), d′) and

condition (6) in Case 1. Let j ∈ M . If d j = −d ′
j , because (x̃ − v j )(x̃ − c j ) ≥ 0

and (x̃ − w j )(x̃ − c j ) ≥ 0 then c j = x̃ j . If d j = d ′
j , there extst λ and λ′ such

that v j = x̃ j + λd j and w j = x̃ j + λ′d j . Since x̃ = 1
2v + 1

2w, λ = λ′. Hence,
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v j = w j = x̃ j . Since |x̃ j − v j | ≥ |x̃ − c j |, |x̃ − c j | = 0. Hence, c j = x̃ j . We have

shown that c = x̃ . Since x̃ �∈ B
f i
R−i and c ∈ B

f i
R−i , a contradiction.

Step 2 For each j ∈ M , there exists a j and b j ∈ [0,� j ] s.t. B
f i
R−i = ∏m

j=1[a j , b j ].
For each j ∈ M , let Pr j denote the projection with respect to j th coordinate. Since

Pr j is continuous and B f 1
R2 is compact, Pr j (B

f i
R−i ) ⊆ [0,� j ] is compact. Let a j =

min Pr j (B
f i
R−i ) and b j = max Pr j (B

f i
R−i ). We show that

∏m
j=1{a j , b j } ⊆ B

f i
R−i .

However, we only show that (b1, . . . , bm) ∈ B
f i
R−i . We can handle the other cases

in the same manner. Suppose to the contrary, that (b1, . . . , bm) �∈ B
f i
R−i . Let ˜̃R ∈ R

be a preference that satisfies p(
˜̃R) = (b1, . . . , bm). Let h ∈ B

f i
R−i be such that

f i (
˜̃R; R−i ) = h. Since h �= (b1, . . . , bm),

∃ j ′ ∈ M s.t. h j ′ < b j ′ .

Since b j ′ = max Pr j (B
f i
R−i ), there exists h′ ∈ B

f i
R−i such that h′

j ′ = b j ′ . Hence, by
Lemma 6, and since |b j ′ − h′

j ′ | < |b j ′ − h j ′ |,

∃Ri ∈ R s.t. p(Ri ) = (b1, . . . , bm) and h′ P(Ri ) h.

However, this implies

f i (Ri ; R−i ) �= h,

a contradiction to WP. ��
Proof of Theorem 3 Let f be a rule satisfying SP and same-sidedness. By Lemma
3 in Amorós (2002), f satisfies WP. We concludes by contradiction. Suppose that

there exists g ∈ �SP such that g dom f but f �= g. By Lemma 4, B f 1
R2 ⊆ Bg1

R2 and

B f 2
R1 ⊆ Bg2

R1 for each (R1, R2) ∈ RN . We claim that

∃(R1, R2) ∈ RN s.t. B f 1
R2 � Bg1

R2 or B f 2
R1 � Bg2

R1 . (7)

If not, then B f 1
R2 = Bg1

R2 and B f 2
R1 = Bg2

R1 for each (R1, R2) ∈ RN . Note that

by Lemma 8, B f 1
R2 is a direct product of closed intervals. By single-peakedness,

#τ(R1, B f 1
R2 ) = 1 for each (R1, R2) ∈ RN . Then, by Lemma 3, for each

(R1, R2) ∈ RN , f 1(R1, R2) = g1(R1, R2). By feasibility, for each (R1, R2) ∈
RN , f 2(R1, R2) = g2(R1, R2). Hence, U = g, a contradiction. Hence (7) holds.

Without loss of generality, suppose that there exists R2 ∈ R such that B f 1
R2 � Bg1

R2 .

We have x̃ ∈ ∏m
j=1[0,� j ] such that x̃ ∈ Bg1

R2 and x̃ �∈ B f 1
R2 . Let R̃ ∈ R be such

that p(R̃) = x̃ . By Lemma 8, for each j ∈ M , there exist a j , b j ∈ [0,� j ] such that
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B f i
R = ∏m

j=1[a j , b j ]. Then, for each j ∈ M , one of the following three holds;

(i) x̃ j < a j (⇔ � j − a j < � j − x̃ j ),

(ii) x̃ j ∈ [a j , b j ] (⇔ � j − x̃ j ∈ [� j − b j ,� j − a j ]),
(iii) b j < x̃ j (⇔ � j − x̃ j < � j − b j ).

Let y ∈ B f 1
R2 be defined as follows; for each j ∈ M , if (i) holds, then y j = a j , if (ii)

holds, then y j = x̃ j , and if (iii) holds, then y j = b j . Obviously, τ(R̃, B f 1
R2 ) = {y}.

Hence,

f 1(R̃, R2) = y and g1(R̃, R2) = x̃ .

Now let us consider the allotment for agent 2. For each Y ⊆ ∏m
j=1[0,� j ], define

sym(Y ) = {y ∈ ∏m
j=1[0,� j ] | ∃x ∈ Y s.t. y = � − x}. Let R∗ ∈ R be such that

p(R∗) = � − p(R2). Then, by same-sidedness, � − p(R2) = f 1(R∗, R2). Hence,

� − p(R2) ∈ B f 1
R2 . Hence, p(R2) ∈ sym(B f 1

R2 ) = ∏m
j=1[� j − b j ,� j − a j ]. By

the definition of y and x̃ , for each j ∈ M ,

(i) ⇒ � j − y j = � j − a j ,

(ii) ⇒ � j − y j = � j − x̃ j ,

(iii) ⇒ � j − y j = � j − b j .

Since for each j ∈ M, p j (R2) ∈ [� j − b j ,� j − a j ], then

∀ j ∈ M, p j (R2) ≤ � j − y j ≤ � j − x̃ j or � j − x̃ j ≤ � j − y j ≤ p j (R2).

Because x̃ �= y,� − x̃ �= � − y. By the single-peakedness of R2, (� − y) P(R2)

(� − x̃). By the feasibility,

f 2(R̃, R2) = � − y and g2(R̃, R2) = � − x̃ .

However, since g dom f , this is a contradiction. ��
Lemma 9 Suppose that n = 2. Suppose also that f satisfies SP, ER and WP. Then,
U dom f .33

Proof We show that for each i ∈ N and each R ∈ R, B f i
R ⊆ BUi

R . Then, we obtain the
conclusion by Lemma 4. Without loss of generality, suppose that i = 1. Let R2 ∈ R.

Then, ER and the feasibility condition imply that B f 1
R2 ⊆ sym(UC(R2, �

2 )).

33 In the problem of public goods provision, Moulin (1994) and Olszewski (2004) show that the serial
mechanism dominates any other mechanisms satisfying a certain set of axioms. Lemma 9 has the same
spirit as their results.
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Step 1 ∀R̃2 ∈ R,
[

p(R̃2) = p(R2) and UC(R̃2, �
2 ) ⊆ UC(R2, �

2 ) ⇒ B f 1
R2 ⊆

sym(UC(R̃2, �
2 ))

]
.

Suppose not. Then, there is R̃2 ∈ R such that p(R̃2) = p(R2), UC(R̃2, �
2 ) ⊆

UC(R2, �
2 ) and B f 1

R2 �⊆ sym(UC(R̃2, �
2 )). Then, there exists a consumption bundle

x such that x ∈ B f 1
R2 and x �∈ sym(UC(R̃2, �

2 )). Obviously we can take Rx ∈
R such that p(Rx ) = x . By Lemma 3, f (Rx , R2) = (x,� − x). Since B f 1

R̃2 ⊆
sym(UC(R̃2, �

2 )), then x �∈ B f 1
R̃2 . Hence, f (Rx , R̃2) �= (x,�− x). Then, f satisfies

WP, a contradiction.

Step 2 ∀x ∈ sym(UC(R2, �
2 ))\BU 1

R2 , ∃R̃2 ∈ R s.t. p(R̃2) = p(R2) and �− x �∈
UC(R̃2, �

2 ).

For each j ∈ M , define

a j =
{

� j − p j (R2) if
� j
2 ≤ p j (R2),

� j
2 otherwise,

b j =
{

� j
2 if

� j
2 ≤ p j (R2),

� j − p j (R2) otherwise,

then BU 1
R2 = ∏m

j=1[a j , b j ]. Hence, sym(BU 1
R2 ) = ∏m

j=1[� j − b j ,� j − a j ].
Let x ∈ sym(UC(R2, �

2 ))\BU 1
R2 . Since �

2 ∈ BU 1
R2 , x �= �

2 . Hence, � − x �= �
2 .

We show the following by contradiction.

¬
[
∀ j ∈ M,

� j

2
≤ � j − x j ≤ p j (R2) or p j (R2) ≤ � j − x j ≤ � j

2

]
. (8)

Suppose not. Then, for each j ∈ M , if
� j
2 ≤ � j − x j ≤ p j (R2), then � j − p j (R2) ≤

x j and x j ≤ � j
2 . This is equivalent to x j ∈ [a j , b j ]. Similarly we can show that for

each j ∈ M , if p j (R2) ≤ � j − x j ≤ � j
2 , then x j ∈ [a j , b j ]. Hence we have shown

that x ∈ BU 1
R2 , a contradiction. We have (8).

By Lemma 7, there exists R̃2 ∈ R such that

p(R̃2) = p(R2) and
�

2
P(R̃2) (� − x).

Now we show B f 1
R2 ⊆ BU 1

R2 by contradiction. Suppose that we have a con-

sumption bundle x in B f 1
R2 but not in BU 1

R2 . Then, ER and feasibility imply that
x ∈ sym(UC(R2, �

2 )). By Step 2, there is a preference R̃2 ∈ R such that p(R̃2) =
p(R2) and � − x �∈ UC(R̃2, �

2 ). Let Rx be a preference whose peak is x . Then, by
Lemma 3 and feasibility, f (Rx , R2) = (x,�− x). By WP, f (Rx , R̃2) = (x,�− x).
f 2(Rx , R̃2) = � − x �∈ UC(R̃2, �

2 ) but f satisfies ER, a contradiction. ��
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Lemma 10 Suppose that n = 2. Suppose also that f satisfies SY and WP. Then,

∀R ∈ RN ,∀i, j ∈ N , [Ri = R j ⇒ f i (R) = f j (R)].

Proof We prove the conclusion by a contradiction. Suppose that R = (R1, R2) ∈ RN

satisfies R1 = R2 and f (R) �= (�
2 , �

2 ). By SY, f 1(R) I (R1) f 2(R). Hence, by
single-peakedness of R1,

¬[∀ j ∈ M, p j (R1) ≤ f 1
j (R) ≤ f 2

j (R) or f 2
j (R) ≤ f 1

j (R) ≤ p j (R1)].

By Lemma 7, there exist R̂ ∈ R such that p(R̂) = p(R1) and f 2(R) P(R̂) f 1(R).
Define R̂ = (R̂, R̂). By WP, f (R̂) = f (R). But this contradicts the SY of f . ��
Lemma 11 Suppose that n = 2. Suppose also that f satisfies SP, SY and WP. Then,
f satisfies ER.

Proof We prove the conclusion by a contradiction. Without loss of generality, suppose
that R = (R1, R2) ∈ RN satisfies �

2 P(R1) f 1(R). By Lemma 10, f (R2, R2) =
(�

2 , �
2 ). Hence, f 1(R2, R2) P(R1) f 1(R). This violates SP. ��

Proof of Theorem 4 Obviously U satisfies ER and WP. By Theorem 3, U satisfies
SSESP which is a stronger requirement than WSESP. Next, we show the converse.
Suppose that f satisfies WSESP, WP and SY. Note that by Lemma 11, f satisfies ER.
By Lemma 9, U dom f . Since f satisfies WSESP, f dom U . Since U satisfies SSESP,
f = U . ��
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